Skip to main content
Log in

Investigations of the valence states, cobalt ion distribution, and defect structures in Co-doped ITO films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The valence states, the distribution of Co ions, and defect structures in the Co-doped ITO films with Co concentrations of 5–13 at.% were examined by X-ray absorption spectroscopy (XAS) at Co, K, and L-edges. The structural analyses and ab initio calculations reveal that the Co atoms are substantially incorporated into the ITO lattice and form cobalt–vacancy complexes, while partial formation of Co0 species is observed for all the films. The analyses of Co–K edge XAS reveal that the Co–O bond length RCo–O is shortened and the corresponding Debye–Waller factor (σ2) obviously increases with Co doping, implying the relaxation of oxygen environment around the substitutional Co ions. The qualitative fitting of Co L3-edge XAS further confirms the coexistence of Co0 and Co2+ in the films. The Co atoms mainly occupy the substitutional sites of In2O3 lattices with the metallic Co clusters being about 20–43 at.% for the 5, 7, and 8.5 at.% Co-doped ITO films. However, a significant fraction (∼57 at.%) of metallic Co clusters is found in the 13 at.% Co-doped ITO film.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. I. Žutić, J. Fabian, and S.D. Sarma: Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323 (2004).

    Article  Google Scholar 

  2. S. Karamat, R.S. Rawat, P. Lee, T.L. Tan, C. Ke, R. Chen, and H.D. Sun: Ferromagnetic signature in vanadium doped ZnO thin films grown by pulsed laser deposition. J. Mater. Res. 31, 3223–3229 (2016).

    Article  CAS  Google Scholar 

  3. T. Dietl, H. Ohno, F. Matsukura, J. Cibert, and D. Ferrand: Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 287, 1019 (2000).

    Article  CAS  Google Scholar 

  4. D.D. Wang, G.Z. Xing, F. Yan, Y.S. Yan, and S. Li: Ferromagnetic (Mn, N)-codoped ZnO nanopillars array: Experimental and computational insights. Appl. Phys. Lett. 104, 022412 (2014).

    Article  Google Scholar 

  5. G. Jayalakshmi and T. Balasubramaniana: Realization of enhanced room temperature ferromagnetism in pure and V-doped ZnO films on TOP functionalization. J. Mater. Res. 29, 158–165 (2014).

    Article  CAS  Google Scholar 

  6. W. Hu, K. Hayashi, T. Fukumura, K. Akagi, M. Tsukada, N. Happo, S. Hosokawa, K. Ohwada, M. Takahasi, M. Suzuki, and M. Kawasaki: Spontaneous formation of suboxidic coordination around Co in ferromagnetic rutile Ti0.95Co0.05O2 film. Appl. Phys. Lett. 106, 222403 (2015).

    Article  Google Scholar 

  7. B. Prajapati, S. Kumar, M. Kumar, S. Chatterjee, and A.K. Ghos: Investigation of the physical properties of Fe:TiO2-diluted magnetic semiconductor nanoparticles. J. Mater. Chem. C 5, 4257–4267 (2017).

    Article  CAS  Google Scholar 

  8. V.G. Myagkov, I.A. Tambasov, O.A. Bayukov, V.S. Zhigalov, L.E. Bykova, Y.L. Mikhlin, M.N. Volochaev, and G.N. Bondarenko: Solid state synthesis and characterization of ferromagnetic nanocomposite Fe–In2O3 thin films. J. Alloys Compd. 612, 189–194 (2014).

    Article  CAS  Google Scholar 

  9. S.M. Yan, W. Qiao, W. Zhong, C.T. Au, and Y.W. Dou: Effects of site occupancy and valence state of Fe ions on ferromagnetism in Fe-doped In2O3 magnetic semiconductor. Appl. Phys. Lett. 104, 062404 (2014).

    Article  Google Scholar 

  10. C.Y. Park, C.Y. You, K.R. Jeon, and S.C. Shin: Charge-carrier mediated ferromagnetism in Mo-doped In2O3 films. Appl. Phys. Lett. 100, 222409 (2012).

    Article  Google Scholar 

  11. S.C. Li, P. Ren, B.C. Zhao, B. Xia, and L. Wang: Room temperature ferromagnetism of bulk polycrystalline (In0.85−xSnxFe0.15)2O3: Charge carrier mediated or oxygen vacancy mediated?Appl. Phys. Lett. 95, 102101 (2009).

    Article  Google Scholar 

  12. G.Z. Xing, J.B. Yi, D.D. Wang, L. Liao, T. Yu, Z.X. Shen, C.H.A. Huan, T.C. Sun, J. Ding, and T. Wu: Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In2O3−δ nanostructures. Phys. Rev. B 79, 174406 (2009).

    Article  Google Scholar 

  13. G. Subías, J. Stankiewicz, F. Villuendas, M.P. Lozano, and J. García: Local structure study of Co-doped indium oxide and indium–tin oxide thin films using X-ray absorption spectroscopy. Phys. Rev. B 79, 094118 (2009).

    Article  Google Scholar 

  14. F.X. Jiang, S.B. Xi, R.R. Ma, X.F. Qin, X.C. Fan, M.G. Zhang, J.Q. Zhou, and X.H. Xu: Room-temperature ferromagnetism in Fe/Sn-codoped In2O3 powders and thin films. Chin. Phys. Lett. 30, 047501 (2013).

    Article  Google Scholar 

  15. S. Kohiki, Y. Murakawa, K. Hori, H. Shimooka, T. Tajiri, H. Deguchi, M. Oku, M. Arai, M. Mitome, and Y. Bando: Magnetic behavior of Fe doped In2O3. Jpn. J. Appl. Phys. 44, L979 (2005).

    Article  CAS  Google Scholar 

  16. H. Kimura, T. Fukumura, M. Kawasaki, K. Inaba, T. Hasegawa, and H. Koinuma: Rutile-type oxide-diluted magnetic semiconductor: Mn-doped SnO2. Appl. Phys. Lett. 80, 94–96 (2002).

    Article  CAS  Google Scholar 

  17. A. Gupta, H. Cao, K. Parekh, K.V. Rao, A.R. Raju, and U.V. Waghmare: Room temperature ferromagnetism in transition metal (V, Cr, Ti) doped In2O3. J. Appl. Phys. 101, 09N513 (2007).

    Article  Google Scholar 

  18. B. Ravel and M. Newville: ATHENA, ARTEMIS, HEPHAESTUS: Data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  19. P. Parent, H. Dexpert, G. Tourillon, and J.M. Grimal: Structural study of tin-doped indium oxide thin films using X-ray absorption spectroscopy and X-ray diffraction. I-description of the indium site. II-tin environment. J. Electrochem. Soc. 139, 276–285 (1992).

    Article  CAS  Google Scholar 

  20. M. Magnuson, S.M. Butorin, J-H. Guo, and J. Mordgren: Electronic structure investigation of CoO by means of soft X-ray scattering. Phys. Rev. B 65, 205106 (2002).

    Article  Google Scholar 

  21. S. Valencia, A. Gaupp, W. Gudat, L. Abad, L. Balcells, A. Cavallaro, B. Martínez, and F.J. Palomares: Mn valence instability in La2/3Ca1/3MnO3 thin films. Phys. Rev. B 73, 104402 (2006).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Tianjin Natural Science Foundation of china (Grant No. 17JCYBJC17300) and Tianjin Undergraduate Training Program for Innovation and Entrepreneurship (Grant No. 201610060061) and by the Beijing Synchrotron Radiation Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yukai An.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, Z., Lai, W., Wu, Z. et al. Investigations of the valence states, cobalt ion distribution, and defect structures in Co-doped ITO films. Journal of Materials Research 33, 2336–2341 (2018). https://doi.org/10.1557/jmr.2018.184

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.184

Navigation