Skip to main content
Log in

2D AlB2 flakes for epitaxial thin film growth

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, we report on the mechanical cleavage of conductive metal-based aluminum diboride (AlB2) flakes. The cleavage resulted in a highly single crystalline 2D material and had an atomically flat and smooth surface as shown by atomic force microscopy (AFM) and secondary ion mass spectrometry. Nanoindentation and AFM imaging of freshly cleaved specimens revealed sub-nm roughness and 30% improvement in the nanomechanical properties as compared to the as-grown AlB2 flakes. Once exposed to ambient air, the cleaved AlB2 flakes formed a superficial oxidation layer of less than 1 nm thickness within 5 min. Owing to the smooth surface, ultra-thin and stable oxide layer, and the excellent mechanical and electrical characteristics of AlB2, the cleaved flakes present an ideal 2D material for emerging applications in microfabrication such as the growth of epitaxial thin films. To prove the sub-nm surface characteristics of cleaved AlB2, a 10-nm thick TiO2 film was deposited on a freshly cleaved AlB2 using atomic layer deposition. Surface roughness and compositional consistency of this film were compared with a control sample deposited on Si. The TiO2 film on AlB2 showed a distinct thin interface layer with fewer defects than TiO2 on Si and superior flatness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, and A.A. Firsov: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

    Article  CAS  Google Scholar 

  2. K.S. Novoselov, D. Jiang, F. Schedin, T.J. Booth, V.V. Khotkevich, S.V. Morozov, and A.K. Geim: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).

    Article  CAS  Google Scholar 

  3. W.Y. Pan, Q.W. Bao, Y.J. Mao, B.H. Liu, and Z.P. Li: Low-temperature synthesis of nanosized metal borides through reaction of lithium borohydride with metal hydroxides or oxides. J. Alloys Compd. 651, 666 (2015).

    Article  CAS  Google Scholar 

  4. X. Sun, X. Liu, J. Yin, J. Yu, Y. Li, Y. Hang, X. Zhou, M. Yu, J. Li, G. Tai, and W. Guo: Two-dimensional boron crystals: Structural stability, tunable properties, fabrications and applications. Adv. Funct. Mater. 27, 1603300 (2017).

    Article  Google Scholar 

  5. N. Mounet, M. Gibertini, P. Schwaller, D. Campi, A. Merkys, A. Marrazzo, T. Sohier, I.E. Castelli, A. Cepellotti, G. Pizzi, and N. Marzari: Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds. Nat. Nanotechnol. 13, 246 (2018).

    Article  CAS  Google Scholar 

  6. A. Marrazzo, M. Gibertini, D. Campi, N. Mounet, and N. Marzari: Prediction of a large-gap and switchable kane-mele quantum spin hall insulator. Phys. Rev. Lett. 120, 117701 (2018).

    Article  Google Scholar 

  7. D. Pacilé, J.C. Meyer, Ç.Ö. Girit, and A. Zettl: The two-dimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 92, 133107 (2008).

    Article  Google Scholar 

  8. A. Gupta, T. Sakthivel, and S. Seal: Recent development in 2D materials beyond graphene. Prog. Mater. Sci. 73, 44 (2015).

    Article  CAS  Google Scholar 

  9. S. Thakur and N. Karak: Alternative methods and nature-based reagents for the reduction of graphene oxide: A review. Carbon 94, 224 (2015).

    Article  CAS  Google Scholar 

  10. U. Burkhardt, V. Gurin, F. Haarmann, H. Borrmann, W. Schnelle, A. Yaresko, and Y. Grin: On the electronic and structural properties of aluminum diboride Al0.9B2. J. Solid State Chem. 177, 389 (2004).

    Article  CAS  Google Scholar 

  11. Ö. Savaş and R. Kayikci: Production and wear properties of metal matrix composites reinforced with boride particles. Mater. Des. 51, 641 (2013).

    Article  Google Scholar 

  12. C. Deppisch, G. Liu, A. Hall, Y. Xu, A. Zangvil, J.K. Shang, and J. Economy: The crystallization and growth of AlB2 single crystal flakes in aluminum. J. Mater. Res. 13, 3485 (1998).

    Article  CAS  Google Scholar 

  13. J. Suda and H. Matsunami: Heteroepitaxial growth of group-III nitrides on lattice-matched metal boride ZrB2 (0 0 0 1) by molecular beam epitaxy. J. Cryst. Growth 237–239, 1114 (2002).

    Article  Google Scholar 

  14. Y. Yamada-Takamura, Z.T. Wang, Y. Fujikawa, T. Sakurai, Q.K. Xue, J. Tolle, P-L. Liu, A.V.G. Chizmeshya, J. Kouvetakis, and I.S.T. Tsong: Surface and interface studies of GaN epitaxy on Si(111) via ZrB2 buffer layers. Phys. Rev. Lett. 95, 266105 (2005).

    Article  Google Scholar 

  15. R-D. Hoffmann and R. Pöttgen: AlB2-related intermetallic compounds–a comprehensive view based on group-subgroup relations. Z. Kristallogr.–Cryst. Mater. 216, 127 (2001).

    Article  CAS  Google Scholar 

  16. I. Loa, K. Kunc, K. Syassen, and P. Bouvier: Crystal structure and lattice dynamics of AlB2 under pressure and implications for MgB2. Phys. Rev. B 66, 134101 (2002).

    Article  Google Scholar 

  17. V.I. Matkovich, J. Economy, and R.F. Giese: Presence of carbon in aluminum borides. J. Am. Chem. Soc. 86, 2337 (1964).

    Article  CAS  Google Scholar 

  18. P.S. Kisly, T.A. Prikhna, and L.S. Golubyak: Properties of high-temperature solution-grown aluminium borides. J. Less-Common Met. 117, 349 (1986).

    Article  Google Scholar 

  19. G.V. Samsonov, V.A. Neronov, and L.K. Lamikhov: The conditions, structure and some properties of phases in the Al–B system. J. Less-Common Met. 67, 291 (1979).

    Article  CAS  Google Scholar 

  20. V.T. Serebryanskii and V.A. Epel’baum: Phase diagram of the aluminum–boron system. J. Struct. Chem. 2, 692 (1961).

    Article  Google Scholar 

  21. C. Deppisch, G. Liu, J.K. Shang, and J. Economy: Processing and mechanical properties of AlB2 flake reinforced Al-alloy composites. Mater. Sci. Eng. A 225, 153 (1997).

    Article  Google Scholar 

  22. A. Hall and J. Economy: The Al(L) + AlB12 ↔ AlB2 peritectic transformation and its role in the formation of high aspect ratio AlB2 flakes. J. Phase Equilib. 21, 63 (2000).

    Article  CAS  Google Scholar 

  23. A.C. Hall and J. Economy: Preparing high- and low-aspect ratio AlB2 flakes from borax or boron oxide. JOM 52, 42 (2000).

    Article  CAS  Google Scholar 

  24. P.D. Padova, C. Ottaviani, C. Quaresima, B. Olivieri, P. Imperatori, E. Salomon, T. Angot, L. Quagliano, C. Romano, A. Vona, M. Muniz-Miranda, A. Generosi, B. Paci, and G.L. Lay: 24 h stability of thick multilayer silicene in air. 2D Mater. 1, 21003 (2014).

    Article  Google Scholar 

  25. K. Ohsawa, Y. Hayashi, R. Hasunuma, and K. Yamabe: Roughness increase on surface and interface of SiO2 grown on atomically flat Si(111) terrace. J. Phys.: Conf. Ser. 191, 12031 (2009).

    Google Scholar 

  26. J. Kim, F. Kim, and J. Huang: Seeing graphene-based sheets. Mater. Today 13, 28 (2010).

    Article  CAS  Google Scholar 

  27. J. Zhu: Graphene production: New solutions to a new problem. Nat. Nanotechnol. 3, 528 (2008).

    Article  CAS  Google Scholar 

  28. H. Li, G. Lu, Y. Wang, Z. Yin, C. Cong, Q. He, L. Wang, F. Ding, T. Yu, and H. Zhang: Mechanical exfoliation and characterization of single-and few-layer nanosheets of WSe2, TaS2, and TaSe2. Small 9, 1974 (2013).

    Article  CAS  Google Scholar 

  29. A.J. Mannix, X-F. Zhou, B. Kiraly, J.D. Wood, D. Alducin, B.D. Myers, X. Liu, B.L. Fisher, U. Santiago, J.R. Guest, M.J. Yacaman, A. Ponce, A.R. Oganov, M.C. Hersam, and N.P. Guisinger: Synthesis of borophenes: Anisotropic, two-dimensional boron polymorphs. Science 350, 1513 (2015).

    Article  CAS  Google Scholar 

  30. Z. Zhang, A.J. Mannix, Z. Hu, B. Kiraly, N.P. Guisinger, M.C. Hersam, and B.I. Yakobson: Substrate-induced nanoscale undulations of borophene on silver. Nano Lett. 16, 6622 (2016).

    Article  CAS  Google Scholar 

  31. B. Feng, J. Zhang, Q. Zhong, W. Li, S. Li, H. Li, P. Cheng, S. Meng, L. Chen, and K. Wu: Experimental realization of two-dimensional boron sheets. Nat. Chem. 8, 563 (2016).

    Article  CAS  Google Scholar 

  32. A. Paul, M.J.H. van Dal, A.A. Kodentsov, and F.J.J. van Loo: The kirkendall effect in multiphase diffusion. Acta Mater. 52, 623 (2004).

    Article  CAS  Google Scholar 

  33. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  34. Y. Wang, D. Raabe, C. Klüber, and F. Roters: Orientation dependence of nanoindentation pile-up patterns and of nanoindentation microtextures in copper single crystals. Acta Mater. 52, 2229 (2004).

    Article  CAS  Google Scholar 

  35. Y.H. Duan, Y. Sun, Z.Z. Guo, M.J. Peng, P.X. Zhu, and J.H. He: Elastic constants of AlB2-type compounds from first-principles calculations. Comput. Mater. Sci. 51, 112 (2012).

    Article  CAS  Google Scholar 

  36. I.R. Shein and A.L. Ivanovskii: Elastic properties of mono- and polycrystalline hexagonal AlB2-like diborides of s, p, and d metals from first-principles calculations. J. Phys.: Condens. Matter 20, 415218 (2008).

    Google Scholar 

  37. R. Gaillac, P. Pullumbi, and F-X. Coudert: ELATE: An open-source online application for analysis and visualization of elastic tensors. J. Phys.: Condens. Matter 28, 275201 (2016).

    Google Scholar 

  38. W. Hofmann and W. Jäniche: Die Struktur von Aluminiumborid AlB2. Z. Phys. Chem. 31B, 214 (1936).

    Article  Google Scholar 

  39. M.L. Whittaker, H.Y. Sohn, and R.A. Cutler: Oxidation kinetics of aluminum diboride. J. Solid State Chem. 207, 163 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the use of the Materials Characterization Facility (MCF) at Texas A&M University and the Frederick Seitz Materials Research Laboratory (MRL) at the University of Illinois at Urbana–Champaign. The authors acknowledge the help of Mete Bakir in the XRD characterization of the flakes. Part of this study was funded by NSF Grant No. CHE-1308312.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas A. Polycarpou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Humood, M., Meyer, J.L., Verkhoturov, S.V. et al. 2D AlB2 flakes for epitaxial thin film growth. Journal of Materials Research 33, 2318–2326 (2018). https://doi.org/10.1557/jmr.2018.173

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.173

Navigation