Abstract
To investigate the effects of adding Au nanoparticles (AuNPs) to TiO2 films on the crystallization, phase transformation, and photocatalysis, films of both TiO2 and TiO2 embedded with AuNPs (Au-TiO2) with various characteristics were prepared by using the dip-coating method with preheating and post-heating treatments. The AuNPs acted as anatase nucleation agents and crystallized a lot of small anatase crystals with sizes of tens of nanometers, which suppressed the growth of anatase crystals that are large enough for them to transform into rutile crystals, resulting in repression of the transformation from anatase into rutile. The AuNPs affected the progress of the photocatalytic and adsorption reactions, resulting in improved photocatalytic activity. Of all the films we tested, the Au-TiO2 film preheated at 400 °C and post-heated at 400 °C (AT400-400), which consisted of small anatase crystals with high covalent character and high crystallinity, contained dispersed AuNPs with the smallest average crystallite size and showed the highest photocatalytic activity. This high activity resulted from the high reaction rate constants for adsorption and photocatalysis.
Similar content being viewed by others
References
N. Xu, Z. Shi, Y. Fan, J. Dong, J. Shi, and M.Z-C. Hu: Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions. Ind. Eng. Chem. Res. 38, 373 (1999).
Y. Paz, Z. Luo, L. Rabenberg, and A. Heller: Photooxidative self-cleaning transparent titanium dioxide films on glass. J. Mater. Res. 10, 2842 (1995).
T. Watanabe: Super-hydrofilic TiO2 photocatalyst and its applications. Ceram. Jpn. 31, 837 (1996).
J. Yu, X. Zhao, and Q. Zhao: Effect of film thickness on the grain size and photocatalytic activity of the sol–gel derived nanometer TiO2 thin films. J. Mater. Sci. Lett. 19, 1015 (2000).
J. Yu, J.C. Yu, and X. Zhao: The effect of SiO2 addition on the grain size and photocatalytic activity of TiO2 thin films. J. Sol–Gel Sci. Technol. 24, 95 (2000).
H. Irie, Y. Watanabe, and K. Hashimoto: Carbon-doped anatase TiO2 powders as a visible-light sensitive photo-catalyst. Chem. Lett. 32, 772 (2003).
R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).
T. Ohnoa, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura: Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal., A 265, 115 (2004).
M. Anpo, Y. Ichihashi, M. Takeuchi, and H. Yamashita: Design of unique titanium oxide photocatalysts by an advanced metal ion-implantation method and photocatalytic reactions under visible light irradiation. Res. Chem. Intermed. 24, 143 (1998).
X. You, F. Chen, J. Zhang, and M. Anpo: A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide. Catal. Lett. 102, 247 (2005).
X.Z. Li and F.B. Li: Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ. Sci. Technol. 35, 2381 (2001).
J. Li, Suyoulema, W. Wang, and Sarina: A study of photodegradation of sulforhodamine B on Au–TiO2/bentonite under UV and visible light irradiation. Solid State Sci. 11, 2037 (2009).
V. Subramanian, E.E. Wolf, and P.V. Kamat: Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 126, 4943 (2004).
C. He, Y. Xiong, and X. Zhu: A novel method for improving photocatalytic activity of TiO2 film: The combination of Ag deposition with application of external electric field. Thin Solid Films 422, 235 (2002).
C. Yogi, K. Kojima, T. Hashishin, N. Wada, Y. Inada, E.D. Gaspera, M. Bersani, A. Martucci, L. Liu, and T-K. Sham: Size effect of Au nanoparticles on TiO2 crystalline phase of nanocomposite thin films and their photocatalytic properties. J. Phys. Chem. C 115, 6554 (2011).
B. Tian, J. Zhang, T. Tong, and F. Chen: Preparation of Au/TiO2 catalysts from Au(I)-thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange. Appl. Catal., B 79, 394 (2008).
K. Qian, B.C. Sweeny, A.C. Johnston-Peck, W. Niu, J.O. Graham, J.S. DuChene, J. Qiu, Y-C. Wang, M.H. Engelhard, D. Su, E.A. Stach, and W.D. Wei: Surface plasmon-driven water reduction: Gold nanoparticle size matters. J. Am. Chem. Soc. 136, 9842 (2014).
R. Kaur and B. Pal: Size and shape dependent attachments of Au nanostructures to TiO2 for optimum reactivity of Au–TiO2 photocatalysis. J. Mol. Catal. A: Chem. 355, 39 (2012).
Z.Y. Wu, G. Ouvrard, P. Gressier, and C.R. Natoli: Ti and O K edges for titanium oxides by multiple scattering calculations: Comparison to XAS and EELS spectra. Phys. Rev. B 55, 10382 (1997).
Y. Joly, D. Cabaret, H. Renevier, and C.R. Natoli: Electron population analysis by full-potential X-ray absorption simulations. Phys. Rev. Lett. 82, 2398 (1998).
J.C. Parlebas, M.A. Khan, T. Uozumi, K. Okada, and A. Kotani: Theory of many-body effects in valence, core-level and isochromat spectroscopies along the 3d transition metal series of oxides. J. Electron Spectrosc. Relat. Phenom. 71, 117 (1995).
L.A. Grunes: Study of the K edges of 3d transition metals in pure and oxide form by X-ray-absorption spectroscopy. Phys. Rev. B 27, 2111 (1983).
V. Luca, S. Djajanti, and R.F. Howe: Structural and electronic properties of sol–gel titanium oxides studied by X-ray absorption spectroscopy. J. Phys. Chem. B 102, 10650 (1998).
F. Farges, G.E. Brown, Jr., and J.J. Rehr: Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: Comparison between theory and experiment. Phys. Rev. B 56, 1809 (1997).
I. Manzini, G. Antonioli, D. Bersani, P.P. Lottici, G. Gnappi, and A. Montenero: X-ray absorption spectroscopy study of crystallization processes in sol–gel-derived TiO2. J. Non-Cryst. Solids 192, 193, 519 (1995).
I. Manzini, G. Antonioli, P.P. Lottici, G. Gnappi, and A. Montenero: X-ray absorption study of titanium coordination in sol–gel derived TiO2. Phys. B 208, 209, 607 (1995).
H. Zhang and J.F. Banfield: Understanding polymorphic phase transformation behaviour during growth of nanocrystalline aggregates: Insights from TiO2. J. Phys. Chem. B 104, 3481 (2000).
S.J. Pfleiderer, D. Lützenkirchen-Hecht, and R. Frahm: Crystallization behaviour of TiO2–ZrO2 composite nanoparticles. J. Sol–Gel Sci. Technol. 64, 27 (2012).
T. Tsumura, N. Kojitani, I. Izumi, N. Iwashita, M. Toyoda, and M. Inagaki: Carbon coating of anatase-type TiO2 and photoactivity. J. Mater. Chem. 12, 1391 (2002).
M. Janus, E. Kusiak-Nejman, and A.W. Morawski: Determination of the photocatalytic activity of TiO2 with high adsorption capacity. Reac. Kinet., Mech. Catal. 103, 279 (2011).
C-H. Wu and J-M. Chern: Kinetics of photocatalytic decomposition of methylene blue. Ind. Eng. Chem. Res. 45, 6450 (2006).
C. Yogi, K. Kojima, N. Wada, H. Tokumoto, T. Takai, T. Mizoguchi, and H. Tamaki: Photocatalytic degradation of methylene blue by TiO2 film and Au particles-TiO2 composite film. Thin Solid Films 516, 5881 (2008).
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Wada, N., Yokomizo, Y., Yogi, C. et al. Effect of adding Au nanoparticles to TiO2 films on crystallization, phase transformation, and photocatalysis. Journal of Materials Research 33, 467–481 (2018). https://doi.org/10.1557/jmr.2018.16
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2018.16