Skip to main content
Log in

Effect of adding Au nanoparticles to TiO2 films on crystallization, phase transformation, and photocatalysis

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To investigate the effects of adding Au nanoparticles (AuNPs) to TiO2 films on the crystallization, phase transformation, and photocatalysis, films of both TiO2 and TiO2 embedded with AuNPs (Au-TiO2) with various characteristics were prepared by using the dip-coating method with preheating and post-heating treatments. The AuNPs acted as anatase nucleation agents and crystallized a lot of small anatase crystals with sizes of tens of nanometers, which suppressed the growth of anatase crystals that are large enough for them to transform into rutile crystals, resulting in repression of the transformation from anatase into rutile. The AuNPs affected the progress of the photocatalytic and adsorption reactions, resulting in improved photocatalytic activity. Of all the films we tested, the Au-TiO2 film preheated at 400 °C and post-heated at 400 °C (AT400-400), which consisted of small anatase crystals with high covalent character and high crystallinity, contained dispersed AuNPs with the smallest average crystallite size and showed the highest photocatalytic activity. This high activity resulted from the high reaction rate constants for adsorption and photocatalysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. N. Xu, Z. Shi, Y. Fan, J. Dong, J. Shi, and M.Z-C. Hu: Effects of particle size of TiO2 on photocatalytic degradation of methylene blue in aqueous suspensions. Ind. Eng. Chem. Res. 38, 373 (1999).

    Article  CAS  Google Scholar 

  2. Y. Paz, Z. Luo, L. Rabenberg, and A. Heller: Photooxidative self-cleaning transparent titanium dioxide films on glass. J. Mater. Res. 10, 2842 (1995).

    Article  CAS  Google Scholar 

  3. T. Watanabe: Super-hydrofilic TiO2 photocatalyst and its applications. Ceram. Jpn. 31, 837 (1996).

    Google Scholar 

  4. J. Yu, X. Zhao, and Q. Zhao: Effect of film thickness on the grain size and photocatalytic activity of the sol–gel derived nanometer TiO2 thin films. J. Mater. Sci. Lett. 19, 1015 (2000).

    Article  CAS  Google Scholar 

  5. J. Yu, J.C. Yu, and X. Zhao: The effect of SiO2 addition on the grain size and photocatalytic activity of TiO2 thin films. J. Sol–Gel Sci. Technol. 24, 95 (2000).

    Article  Google Scholar 

  6. H. Irie, Y. Watanabe, and K. Hashimoto: Carbon-doped anatase TiO2 powders as a visible-light sensitive photo-catalyst. Chem. Lett. 32, 772 (2003).

    Article  CAS  Google Scholar 

  7. R. Asahi, T. Morikawa, T. Ohwaki, K. Aoki, and Y. Taga: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269 (2001).

    Article  CAS  Google Scholar 

  8. T. Ohnoa, M. Akiyoshi, T. Umebayashi, K. Asai, T. Mitsui, and M. Matsumura: Preparation of S-doped TiO2 photocatalysts and their photocatalytic activities under visible light. Appl. Catal., A 265, 115 (2004).

    Article  Google Scholar 

  9. M. Anpo, Y. Ichihashi, M. Takeuchi, and H. Yamashita: Design of unique titanium oxide photocatalysts by an advanced metal ion-implantation method and photocatalytic reactions under visible light irradiation. Res. Chem. Intermed. 24, 143 (1998).

    Article  CAS  Google Scholar 

  10. X. You, F. Chen, J. Zhang, and M. Anpo: A novel deposition precipitation method for preparation of Ag-loaded titanium dioxide. Catal. Lett. 102, 247 (2005).

    Article  CAS  Google Scholar 

  11. X.Z. Li and F.B. Li: Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ. Sci. Technol. 35, 2381 (2001).

    Article  CAS  Google Scholar 

  12. J. Li, Suyoulema, W. Wang, and Sarina: A study of photodegradation of sulforhodamine B on Au–TiO2/bentonite under UV and visible light irradiation. Solid State Sci. 11, 2037 (2009).

    Article  CAS  Google Scholar 

  13. V. Subramanian, E.E. Wolf, and P.V. Kamat: Catalysis with TiO2/gold nanocomposites. Effect of metal particle size on the Fermi level equilibration. J. Am. Chem. Soc. 126, 4943 (2004).

    Article  CAS  Google Scholar 

  14. C. He, Y. Xiong, and X. Zhu: A novel method for improving photocatalytic activity of TiO2 film: The combination of Ag deposition with application of external electric field. Thin Solid Films 422, 235 (2002).

    Article  CAS  Google Scholar 

  15. C. Yogi, K. Kojima, T. Hashishin, N. Wada, Y. Inada, E.D. Gaspera, M. Bersani, A. Martucci, L. Liu, and T-K. Sham: Size effect of Au nanoparticles on TiO2 crystalline phase of nanocomposite thin films and their photocatalytic properties. J. Phys. Chem. C 115, 6554 (2011).

    Article  CAS  Google Scholar 

  16. B. Tian, J. Zhang, T. Tong, and F. Chen: Preparation of Au/TiO2 catalysts from Au(I)-thiosulfate complex and study of their photocatalytic activity for the degradation of methyl orange. Appl. Catal., B 79, 394 (2008).

    Article  CAS  Google Scholar 

  17. K. Qian, B.C. Sweeny, A.C. Johnston-Peck, W. Niu, J.O. Graham, J.S. DuChene, J. Qiu, Y-C. Wang, M.H. Engelhard, D. Su, E.A. Stach, and W.D. Wei: Surface plasmon-driven water reduction: Gold nanoparticle size matters. J. Am. Chem. Soc. 136, 9842 (2014).

    Article  CAS  Google Scholar 

  18. R. Kaur and B. Pal: Size and shape dependent attachments of Au nanostructures to TiO2 for optimum reactivity of Au–TiO2 photocatalysis. J. Mol. Catal. A: Chem. 355, 39 (2012).

    Article  CAS  Google Scholar 

  19. Z.Y. Wu, G. Ouvrard, P. Gressier, and C.R. Natoli: Ti and O K edges for titanium oxides by multiple scattering calculations: Comparison to XAS and EELS spectra. Phys. Rev. B 55, 10382 (1997).

    Article  CAS  Google Scholar 

  20. Y. Joly, D. Cabaret, H. Renevier, and C.R. Natoli: Electron population analysis by full-potential X-ray absorption simulations. Phys. Rev. Lett. 82, 2398 (1998).

    Article  Google Scholar 

  21. J.C. Parlebas, M.A. Khan, T. Uozumi, K. Okada, and A. Kotani: Theory of many-body effects in valence, core-level and isochromat spectroscopies along the 3d transition metal series of oxides. J. Electron Spectrosc. Relat. Phenom. 71, 117 (1995).

    Article  CAS  Google Scholar 

  22. L.A. Grunes: Study of the K edges of 3d transition metals in pure and oxide form by X-ray-absorption spectroscopy. Phys. Rev. B 27, 2111 (1983).

    Article  CAS  Google Scholar 

  23. V. Luca, S. Djajanti, and R.F. Howe: Structural and electronic properties of sol–gel titanium oxides studied by X-ray absorption spectroscopy. J. Phys. Chem. B 102, 10650 (1998).

    Article  CAS  Google Scholar 

  24. F. Farges, G.E. Brown, Jr., and J.J. Rehr: Ti K-edge XANES studies of Ti coordination and disorder in oxide compounds: Comparison between theory and experiment. Phys. Rev. B 56, 1809 (1997).

    Article  CAS  Google Scholar 

  25. I. Manzini, G. Antonioli, D. Bersani, P.P. Lottici, G. Gnappi, and A. Montenero: X-ray absorption spectroscopy study of crystallization processes in sol–gel-derived TiO2. J. Non-Cryst. Solids 192, 193, 519 (1995).

    Article  Google Scholar 

  26. I. Manzini, G. Antonioli, P.P. Lottici, G. Gnappi, and A. Montenero: X-ray absorption study of titanium coordination in sol–gel derived TiO2. Phys. B 208, 209, 607 (1995).

    Article  Google Scholar 

  27. H. Zhang and J.F. Banfield: Understanding polymorphic phase transformation behaviour during growth of nanocrystalline aggregates: Insights from TiO2. J. Phys. Chem. B 104, 3481 (2000).

    Article  CAS  Google Scholar 

  28. S.J. Pfleiderer, D. Lützenkirchen-Hecht, and R. Frahm: Crystallization behaviour of TiO2–ZrO2 composite nanoparticles. J. Sol–Gel Sci. Technol. 64, 27 (2012).

    Article  CAS  Google Scholar 

  29. T. Tsumura, N. Kojitani, I. Izumi, N. Iwashita, M. Toyoda, and M. Inagaki: Carbon coating of anatase-type TiO2 and photoactivity. J. Mater. Chem. 12, 1391 (2002).

    Article  CAS  Google Scholar 

  30. M. Janus, E. Kusiak-Nejman, and A.W. Morawski: Determination of the photocatalytic activity of TiO2 with high adsorption capacity. Reac. Kinet., Mech. Catal. 103, 279 (2011).

    Article  CAS  Google Scholar 

  31. C-H. Wu and J-M. Chern: Kinetics of photocatalytic decomposition of methylene blue. Ind. Eng. Chem. Res. 45, 6450 (2006).

    Article  CAS  Google Scholar 

  32. C. Yogi, K. Kojima, N. Wada, H. Tokumoto, T. Takai, T. Mizoguchi, and H. Tamaki: Photocatalytic degradation of methylene blue by TiO2 film and Au particles-TiO2 composite film. Thin Solid Films 516, 5881 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuo Kojima.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wada, N., Yokomizo, Y., Yogi, C. et al. Effect of adding Au nanoparticles to TiO2 films on crystallization, phase transformation, and photocatalysis. Journal of Materials Research 33, 467–481 (2018). https://doi.org/10.1557/jmr.2018.16

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.16

Navigation