Skip to main content

Advertisement

Log in

Stability study of thermal cycling on organic solar cells

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We present a side-by-side comparison of the stability of three different types of benchmark solution-processed organic solar cells (OSCs), subject to thermal cycling stress conditions. We study the in situ performance during 5 complete thermal cycles between −100 and 80 °C and find that all the device types investigated exhibit superior stability, albeit with a distinct temperature dependence of device efficiency. After applying a much harsher condition of 50 thermal cycles, we further affirm the robustness of the OSC against thermal cycling stress. Our results suggest that OSCs could be a promising candidate for applications with large variations and rapid change in the operating temperature such as outer space applications. Also, a substantial difference in the efficiency drops from high to low temperature for different systems is observed. It suggests that maintaining optimum performance with minimal variations with operating temperature is a key challenge to be addressed for such photovoltaic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3

Similar content being viewed by others

References

  1. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014).

    Article  CAS  Google Scholar 

  2. D. Baran, R.S. Ashraf, D.A. Hanifi, M. Abdelsamie, N. Gasparini, J.A. Rohr, S. Holliday, A. Wadsworth, S. Lockett, M. Neophytou, C.J.M. Emmott, J. Nelson, C.J. Brabec, A. Amassian, A. Salleo, T. Kirchartz, J.R. Durrant, and I. McCulloch: Reducing the efficiency-stability-cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 16, 363–369 (2017).

    Article  CAS  Google Scholar 

  3. D. Deng, Y. Zhang, J. Zhang, Z. Wang, L. Zhu, J. Fang, B. Xia, Z. Wang, K. Lu, W. Ma, and Z. Wei: Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nat. Commun. 7, 13740 (2016).

  4. J. Wan, X. Xu, G. Zhang, Y. Li, K. Feng, and Q. Peng: Highly efficient halogen-free solvent processed small-molecule organic solar cells enabled by material design and device engineering. Energy Environ. Sci. 10, 1739–1745 (2017).

    Article  CAS  Google Scholar 

  5. Y. Cui, H. Yao, B. Gao, Y. Qin, S. Zhang, B. Yang, C. He, B. Xu, and J. Hou: Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell. J. Am. Chem. Soc. 139, 7302–7309 (2017).

    Article  CAS  Google Scholar 

  6. J. Liu, S. Chen, D. Qian, B. Gautam, G. Yang, J. Zhao, J. Bergqvist, F. Zhang, W. Ma, H. Ade, O. Inganäs, K. Gundogdu, F. Gao, and H. Yan: Fast charge separation in a non-fullerene organic solar cell with a small driving force. Nat. Energy1, 16089 (2016).

  7. M. Jørgensen, K. Norrman, S.A. Gevorgyan, T. Tromholt, B. Andreasen, and F.C. Krebs: Stability of polymer solar cells. Adv. Mater. 24, 580–612 (2012).

    Article  Google Scholar 

  8. M. Jørgensen, K. Norrman, and F.C. Krebs: Stability/degradation of polymer solar cells. Sol. Energy Mater. Sol. Cells 92, 686–714 (2008).

    Article  Google Scholar 

  9. K. Kawano, R. Pacios, D. Poplavskyy, J. Nelson, D.D.C. Bradley, and J.R. Durrant: Degradation of organic solar cells due to air exposure. Sol. Energy Mater. Sol. Cells 90, 3520–3530 (2006).

    Article  CAS  Google Scholar 

  10. Z. Li, H.C. Wong, Z. Huang, H. Zhong, C.H. Tan, W.C. Tsoi, J.S. Kim, J.R. Durrant, and J.T. Cabral: Performance enhancement of fullerene-based solar cells by light processing. Nat. Commun. 4, 2227 (2013).

    Article  Google Scholar 

  11. F. Piersimoni, G. Degutis, S. Bertho, K. Vandewal, D. Spoltore, T. Vangerven, J. Drijkoningen, M.K. Van Bael, A. Hardy, J. D’Haen, W. Maes, D. Vanderzande, M. Nesladek, and J. Manca: Influence of fullerene photodimerization on the PCBM crystallization in polymer: Fullerene bulk heterojunctions under thermal stress. J. Polym. Sci., Part B: Polym. Phys. 51, 1209–1214 (2013).

    Article  CAS  Google Scholar 

  12. B.C. Schroeder, Z. Li, M.A. Brady, G.C. Faria, R.S. Ashraf, C.J. Takacs, J.S. Cowart, D.T. Duong, K.H. Chiu, C-H. Tan, J.T. Cabral, A. Salleo, M.L. Chabinyc, J.R. Durrant, and I. McCulloch: Enhancing fullerene-based solar cell lifetimes by addition of a fullerene dumbbell. Angew. Chem., Int. Ed. 53, 12870–12875 (2014).

    Article  CAS  Google Scholar 

  13. H.C. Wong, Z. Li, C.H. Tan, H. Zhong, Z. Huang, H. Bronstein, I. McCulloch, J.T. Cabral, and J.R. Durrant: Morphological stability and performance of polymer–fullerene solar cells under thermal stress: The impact of photoinduced PC60BM oligomerization. ACS Nano 8, 1297–1308 (2014).

    Article  CAS  Google Scholar 

  14. B.J. Kim, Y. Miyamoto, B. Ma, and J.M.J. Fréchet: Photocrosslinkable polythiophenes for efficient, thermally stable, organic photovoltaics. Adv. Funct. Mater. 19, 2273–2281 (2009).

    Article  Google Scholar 

  15. W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganäs, F. Gao, and J. Hou: Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 28, 4734–4739 (2016).

    Article  CAS  Google Scholar 

  16. S. Holliday, R.S. Ashraf, A. Wadsworth, D. Baran, S.A. Yousaf, C.B. Nielsen, C-H. Tan, S.D. Dimitrov, Z. Shang, N. Gasparini, M. Alamoudi, F. Laquai, C.J. Brabec, A. Salleo, J.R. Durrant, and I. McCulloch: High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7, 11585 (2016).

  17. S. Guo, C. Brandt, T. Andreev, E. Metwalli, W. Wang, J. Perlich, and P. Müller-Buschbaum: First step into space: Performance and morphological evolution of P3HT:PCBM bulk heterojunction solar cells under AM0 illumination. ACS Appl. Mater. Interfaces 6, 17902–17910 (2014).

    Article  CAS  Google Scholar 

  18. C.H. Peters, I.T. Sachs-Quintana, J.P. Kastrop, S. Beaupré, M. Leclerc, and M.D. McGehee: High efficiency polymer solar cells with long operating lifetimes. Adv. Energy Mater. 1, 491–494 (2011).

    Article  CAS  Google Scholar 

  19. H. Li, D. He, Q. Zhou, P. Mao, J. Cao, L. Ding, and J. Wang: Temperature-dependent Schottky barrier in high-performance organic solar cells. Sci. Rep. 7, 40134 (2017).

  20. F. Gao, W. Tress, J. Wang, and O. Inganäs: Temperature dependence of charge carrier generation in organic photovoltaics. Phys. Rev. Lett. 114, 128701 (2015).

    Article  Google Scholar 

  21. H.K.H. Lee, J. Wu, J. Barbe, S.M. Jain, S. Wood, E.M. Speller, Z. Li, F.A. Castro, J.R. Durrant, and W.C. Tsoi: Organic photovoltaic cells—Promising indoor light harvesters for self-sustainable electronics. J. Mater. Chem. A 6, 5618–5626 (2018).

    Article  CAS  Google Scholar 

  22. N.G. McCrum, C.P. Buckley, and C.B. Bucknall: Principles of Polymer Engineering (Oxford University Press, New York, 1997).

    Google Scholar 

  23. N.V. Thuan, T.V. Son, T.Q. Trung, T.T. Thao, and N.N. Dinh: Development of laser beam diffraction technique for determination of thermal expansion coefficient of polymeric thin films. VNU Journal of Science: Mathematics — Physics 31, 21–27 (2015).

    Google Scholar 

  24. 2.3.5 Thermal Expansion. In Tables of Physical and Chemical Constants (16th edition 1995). Kay & Laby Online. Version 1.1 (2010). Available at: http://www.kayelaby.npl.co.uk/general_physics/2_3/2_3_5.html.

  25. N. Espinosa, Y-S. Zimmermann, G.A. dos Reis Benatto, M. Lenz, and F.C. Krebs: Outdoor fate and environmental impact of polymer solar cells through leaching and emission to rainwater and soil. Energy Environ. Sci. 9, 1674–1680 (2016).

    Article  CAS  Google Scholar 

  26. I. Cardinaletti, T. Vangerven, S. Nagels, R. Cornelissen, D. Schreurs, J. Hruby, J. Vodnik, D. Devisscher, J. Kesters, J. D’Haen, A. Franquet, V. Spampinato, T. Conard, W. Maes, W. Deferme, and J.V. Manca: Organic and perovskite solar cells for space applications. Sol. Energy Mater. Sol. Cells 182, 121–127 (2018).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to acknowledge the funding support from the Welsh Assembly Government funded Sêr Cymru Solar Project, the European Commission’s CHEETAH Project (FP7-Energy-2013—Grant No. 609788) and EPSRC Grant Nos. EP/M025020/1 and EP/K030671/1. ZL thanks the Welsh Assembly Government Sêr Cymru II fellowship scheme for funding.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhe Li or Wing Chung Tsoi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, H.K.H., Durrant, J.R., Li, Z. et al. Stability study of thermal cycling on organic solar cells. Journal of Materials Research 33, 1902–1908 (2018). https://doi.org/10.1557/jmr.2018.167

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.167

Navigation