Skip to main content
Log in

Crystallographic analysis of nucleation for random orientations in high-purity tantalum

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Strain path changes during clock rolling cause more serious interaction between adjacent grains, resulting in the occurrence of interactive regions (IRs) with random orientations. Furthermore, plenty of new grains with relatively random orientations are introduced by the subsequent annealing of these IRs. The morphology of the IR and the origin of random orientations were therefore investigated in this study, and the electron backscatter diffraction technique was used to characterize crystallographic orientations of nuclei and deformed matrices. A short-time annealing was imposed on a specimen to catch the transient nucleation behaviors. The results indicate that the orientations of nuclei are similar to their surrounding deformed matrices, especially the points with larger local-misorientation. Additionally, the shape of new grains depends on where it forms, and it is suggested that this fact mainly results from the great difference in stored energies between deformed matrices with {111} and {100} orientations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. C.A. Michaluk: Correlating discrete orientation and grain size to the sputter deposition properties of tantalum. J. Electron. Mater. 31, 2 (2002).

    Article  CAS  Google Scholar 

  2. Z. Zhang, L. Kho, and C.E. Wickersham: Effect of grain orientation on tantalum magnetron sputtering yield. J. Vac. Sci. Technol., A 24, 1107 (2006).

    Article  CAS  Google Scholar 

  3. M.T. Robinson and A.L. Southern: Sputtering experiments with 1- to 5-keV Ar+ ions. III. Monocrystal targets of the hexagonal metals Mg, Zn, Zr, and Cd. J. Appl. Phys. 39, 3463 (1968).

    Article  CAS  Google Scholar 

  4. M.T. Robinson and A.L. Southern: Sputtering experiments with 1- to 5-keV Ar+ ions. II. Monocrystalline targets of Al, Cu, and Au. J. Appl. Phys. 38, 2969 (1967).

    Article  Google Scholar 

  5. F.J. Humphreys: Nucleation in recrystallization. Mater. Sci. Forum 467–470, 107 (2004).

    Article  Google Scholar 

  6. D. Raabe: Recovery and recrystallization: Phenomena, physics, models, simulation. In Physical Metallurgy, Vol. 2, 5th ed., D.E. Laughlin and K. Homo eds. (Elsevier, Amsterdam, the Netherlands 2014); p. 2291.

    Chapter  Google Scholar 

  7. F.J. Humphreys and M. Hatherly, eds.: Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Oxford, U.K., 2004).

    Google Scholar 

  8. C. Deng, S.F. Liu, H.Y. Fan, X.B. Hao, J.L. Ji, Z.Q. Zhang, and Q. Liu: Elimination of elongated bands by clock rolling in high-purity tantalum. Metall. Mater. Trans. A 46, 5477 (2015).

    Article  CAS  Google Scholar 

  9. Y.H. Liu, S.F. Liu, J.L. Zhu, C. Deng, H.Y. Fan, L.F. Cao, and Q. Liu: Strain path dependence of microstructure and annealing behavior in high purity tantalum. Mater. Sci. Eng., A 707, 518 (2017).

    Article  CAS  Google Scholar 

  10. S.F. Liu, H.Y. Fan, C. Deng, X.B. Hao, Y. Guo, and Q. Liu: Through-thickness texture in clock-rolled tantalum plate. Int. J. Refract. Met. Hard Mater. 48, 194 (2015).

    Article  CAS  Google Scholar 

  11. C. Deng, S.F. Liu, J.L. Ji, X.B. Hao, Z.Q. Zhang, and Q. Liu: Texture evolution of high purity tantalum under different rolling paths. J. Mater. Process. Technol. 214, 462 (2014).

    Article  CAS  Google Scholar 

  12. D. Raabe: On the orientation dependence of static recovery in low-carbon steels. Scr. Metall. Mater. 33, 735 (1995).

    Article  CAS  Google Scholar 

  13. W.B. Hutchinson: Deformation substructures and recrystallisation. Mater. Sci. Forum 558–559, 13 (2007).

    Article  Google Scholar 

  14. D.I. Kim, J.S. Kim, J.H. Kim, and S.H. Choi: A study on the annealing behavior of Cu-added bake-hardenable steel using an in situ EBSD technique. Acta Mater. 68, 9 (2014).

    Article  CAS  Google Scholar 

  15. S.I. Wright, M.M. Nowell, and D.P. Field: A review of strain analysis using electron backscatter diffraction. Microscopy and microanalysis 17, 316 (2011).

    Article  CAS  Google Scholar 

  16. H. Fan, S. Liu, L. Li, C. Deng, and Q. Liu: Largely alleviating the orientation dependence by sequentially changing strain paths. Mater. Des. 97, 464 (2016).

    Article  CAS  Google Scholar 

  17. R.A. Vandermeer and J.W.B. Snyder: Recovery and recrystallization in rolled tantalum single crystals. Metall. Trans. A 10, 1031 (1979).

    Article  Google Scholar 

  18. K. Hagihara, M. Yamasaki, M. Honnami, H. Izuno, M. Tane, T. Nakano, and Y. Kawamura: Crystallographic nature of deformation bands shown in Zn and Mg-based long-period stacking ordered (LPSO) phase. Philos. Mag. 95, 132 (2014).

    Article  Google Scholar 

  19. M.T.P. Rez-Prado, J.A. Hines, and K.S. Vecchio: Microstructural evolution in adiabatic shear bands in Ta and Ta–W alloys. Acta Mater. 49, 2905 (2001).

    Article  Google Scholar 

  20. B. Radhakrishnan and G.B. Sarma: Coupled simulations of texture evolution during deformation and recrystallization of fcc and bcc metals. Mater. Sci. Eng., A 494, 73 (2008).

    Article  Google Scholar 

  21. C. Deng, S.F. Liu, X.B. Hao, J.L. Ji, Z.Q. Zhang, and Q. Liu: Orientation dependence of stored energy release and microstructure evolution in cold rolled tantalum. Int. J. Refract. Met. Hard Mater. 46, 24 (2014).

    Article  CAS  Google Scholar 

  22. A.J. Wilkinson and D.J. Dingley: Quantitative deformation studies using electron back scatter patterns. Acta Metall. Mater. 39, 3047 (1991).

    Article  CAS  Google Scholar 

  23. S-H. Choi and Y-S. Jin: Evaluation of stored energy in cold-rolled steels from EBSD data. Mater. Sci. Eng., A 371, 149 (2004).

    Article  Google Scholar 

  24. S.H. Choi: Monte Carlo technique for simulation of recrystallization texture in interstitial free steels. Mater. Sci. Forum 408–412, 469 (2002).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The present work was co-supported by the National Natural Science Foundation of China (Grants Nos. 51421001 and 51701032), the Major National Science and Technology Projects of China (No. 2011ZX02705), and the Chongqing Science and Technology Commission in China (CSTC, 2017jcyjAX0094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shifeng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Liu, S., Fan, H. et al. Crystallographic analysis of nucleation for random orientations in high-purity tantalum. Journal of Materials Research 33, 1755–1763 (2018). https://doi.org/10.1557/jmr.2018.164

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.164

Navigation