Skip to main content
Log in

Influence of heat treatment on microstructure, mechanical behavior, and soft magnetic properties in an fcc-based Fe29Co28Ni29Cu7Ti7 high-entropy alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The influence of heat treatment (homogenization) on the microstructure, mechanical behavior, and soft magnetic properties of a face-centered cubic (fcc)-based high-entropy alloy (HEA), Fe29Co28Ni29Cu7Ti7, fabricated by casting, was investigated in detail. The as-cast Fe29Co28Ni29Cu7Ti7 HEA was composed of a primary fcc phase containing coherent dispersed L12 nanoprecipitates and trace amounts of a needle-like phase. The tensile yield strength (σ0.2), ultimate strength, and total elongation of the as-cast alloy are 917 MPa, 1060 MPa, and 1.8%, respectively. Following homogenization, the alloy having a single fcc phase shows a decrease of ∼ 55% in yield strength and a decrease of ∼ 36% in ultimate strength; however, the total elongation is increased from 1.8 to 52%. Saturation magnetization (Msat) is decreased from 111.54 to 110.34 Am2/kg, by contrast, coercivity (Hc) is increased from 266.65 to 966.89 A/m. The dissolution of precipitates and grain growth are mainly responsible for the changes in magnetic properties and mechanical behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  2. D.B. Miracle and O.N. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).

    Article  CAS  Google Scholar 

  3. D. Choudhuri, B. Gwalani, S. Gorsse, C.V. Mikler, R.V. Ramanujan, M.A. Gibson, and R. Banerjee: Change in the primary solidification phase from fcc to bcc-based B2 in high entropy or complex concentrated alloys. Scr. Mater. 127, 186 (2017).

    Article  CAS  Google Scholar 

  4. Y. Yuan, Y. Wu, X. Tong, H. Zhang, H. Wang, X.J. Liu, L. Ma, H.L. Suo, and Z.P. Lu: Rare-earth high-entropy alloys with giant magnetocaloric effect. Acta Mater. 125, 481 (2017).

    Article  CAS  Google Scholar 

  5. Y. Zou, S. Maiti, W. Steurer, and R. Spolenak: Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85 (2014).

    Article  CAS  Google Scholar 

  6. M. Chuang, M. Tsai, W. Wang, S. Lin, and J. Yeh: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 6308 (2011).

    Article  CAS  Google Scholar 

  7. D.H. Lee, M.Y. Seok, Y. Zhao, I.C. Choi, J. He, Z. Lu, J.Y. Suh, U. Ramamurty, M. Kawasaki, T.G. Langdon, and J-i. Jang: Spherical nanoindentation creep behavior of nanocrystalline and coarse-grained CoCrFeMnNi high-entropy alloys. Acta Mater. 109, 314 (2016).

    Article  CAS  Google Scholar 

  8. Y. Zhang, T. Zuo, Y. Cheng, and P.K. Liaw: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1455 (2013).

    Article  Google Scholar 

  9. C.D. Gómez-Esparza, F.J. Baldenebro-López, C.R. Santillán-Rodríguez, I. Estrada-Guel, J.A. Matutes-Aquino, J.M. Herrera-Ramírez, and R. Martínez-Sánchez: Microstructural and magnetic behavior of an equiatomic NiCoAlFe alloy prepared by mechanical alloying. J. Alloys Compd. 615, S317 (2014).

    Article  Google Scholar 

  10. P. Li, A. Wang, and C.T. Liu: A ductile high entropy alloy with attractive magnetic properties. J. Alloys Compd. 694, 55 (2017).

    Article  CAS  Google Scholar 

  11. T. Zuo, M.C. Gao, L. Ouyang, X. Yang, Y. Cheng, R. Feng, S. Chen, P.K. Liaw, J.A. Hawk, and Y. Zhang: Tailoring magnetic behavior of CoFeMnNiX (X = Al, Cr, Ga, and Sn) high entropy alloys by metal doping. Acta Mater. 130, 10 (2017).

    Article  CAS  Google Scholar 

  12. C. Shang, E. Axinte, W. Ge, Z. Zhang, and Y. Wang: High-entropy alloy coatings with excellent mechanical, corrosion resistance and magnetic properties prepared by mechanical alloying and hot pressing sintering. Surf. Interfaces. 9, 36 (2017).

    Article  CAS  Google Scholar 

  13. T. Borkar, B. Gwalani, D. Choudhuri, C.V. Mikler, C.J. Yannetta, X. Chen, R.V. Ramanujan, M.J. Styles, M.A. Gibson, and R. Banerjee: A combinatorial assessment of AlxCrCuFeNi2 (0 < x < 1.5) complex concentrated alloys: Microstructure, microhardness, and magnetic properties. Acta Mater. 116, 63 (2016).

    Article  CAS  Google Scholar 

  14. V.M. Nadutov, S.Y. Makarenko, and Y.O. Svystunov: Effect of Al content on magnetic properties and thermal expansion of as-cast high-entropy alloys AlxFeCoNiCuCr. Metallofiz. Noveishie Tekhnol. 37, 987 (2015).

    Article  CAS  Google Scholar 

  15. T.T. Zuo, S.B. Ren, P.K. Liaw, and Y. Zhang: Processing effects on the magnetic and mechanical properties of FeCoNiAl0.2Si0.2 high entropy alloy. Int. J. Miner. Metall. Mater. 20, 549 (2013).

    Article  CAS  Google Scholar 

  16. P.C. Lin, C.Y. Cheng, J.W. Yeh, and T.S. Chin: Soft magnetic properties of high-entropy Fe–Co–Ni–Cr–Al–Si thin films. Entropy. 18, 1 (2016).

    Article  CAS  Google Scholar 

  17. P.F. Yu, L.J. Zhang, H. Cheng, H. Zhang, M.Z. Ma, Y.C. Li, G. Li, P.K. Liaw, and R.P. Liu: The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering. Intermetallics. 70, 82 (2016).

    Article  CAS  Google Scholar 

  18. T. Zuo, X. Yang, P.K. Liaw, and Y. Zhang: Influence of bridgman solidification on microstructures and magnetic behaviors of a non-equiatomic FeCoNiAlSi high-entropy alloy. Intermetallics 67, 171 (2015).

    Article  CAS  Google Scholar 

  19. S. Singh, N. Wanderka, K. Kiefer, K. Siemensmeyer, and J. Banhart: Effect of decomposition of the Cr–Fe–Co rich phase of AlCoCrCuFeNi high entropy alloy on magnetic properties. Ultramicroscopy 111, 619 (2011).

    Article  CAS  Google Scholar 

  20. S. Guo and C.T. Liu: Phase stability in high entropy alloys: Formation of solid-solution phase or amorphous phase. Prog. Nat. Sci.: Mater. Int. 21, 433 (2011).

    Article  Google Scholar 

  21. X. Yang and Y. Zhang: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).

    Article  CAS  Google Scholar 

  22. Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, and E.J. Lavernia: Microstructure and strengthening mechanisms in an fcc structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107, 59 (2016).

    Article  CAS  Google Scholar 

  23. Z. Fu, B.E. MacDonald, D. Zhang, B. Wu, W. Chen, J. Ivanisenko, H. Hahn, and E.J. Lavernia: Fcc nanostructured TiFeCoNi alloy with multi-scale grains and enhanced plasticity. Scr. Mater. 143, 108 (2018).

    Article  CAS  Google Scholar 

  24. I.S. Kim, B.G. Choi, H.U. Hong, J. Do, and C.Y. Jo: Influence of thermal exposure on the microstructural evolution and mechanical properties of a wrought Ni-base superalloy. Mater. Sci. Eng. A. 593, 55 (2014).

    Article  CAS  Google Scholar 

  25. L. Xu, C. Cui, and X. Sun: The effects of Co and Ti additions on microstructures and compressive strength of Udimet710. Mater. Sci. Eng. A. 528, 7851 (2011).

    Article  CAS  Google Scholar 

  26. A. Takeuchi and A. Inoue: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).

    Article  CAS  Google Scholar 

  27. W.H. Liu, Z.P. Lu, J.Y. He, J.H. Luan, Z.J. Wang, B. Liu, Y. Liu, M.W. Chen, and C.T. Liu: Ductile CoCrFeNiMox high entropy alloys strengthened by hard intermetallic phases. Acta Mater. 116, 332 (2016).

    Article  CAS  Google Scholar 

  28. J.Y. He, W.H. Liu, H. Wang, Y. Wu, X.J. Liu, T.G. Nieh, and Z.P. Lu: Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 62, 105 (2014).

    Article  CAS  Google Scholar 

  29. R. Wei, H. Sun, C. Chen, Z. Han, and F. Li: Effect of cooling rate on the phase structure and magnetic properties of Fe26.7Co28.5Ni28.5Si4.6B8.7P3 high entropy alloy. J. Magn. Magn. Mater. 435, 184 (2017).

    Article  CAS  Google Scholar 

  30. R.H. Yu, S. Basu, Y.F. Li, Y. Zhang, G.C. Hadjipanayis, B.E. Lorenz, and Q. Xiao: Microstructural effect of magnetic properties of FeCo-based soft magnetic alloys. J. Magn. Soc. Jpn. 23, 397 (1999).

    Article  CAS  Google Scholar 

  31. C. Hou, Y. Shan, H. Wu, and X. Bi: Effect of a small addition of Cr on soft magnetic and mechanical properties of Fe–49Co–2V alloy. J. Alloys Compd. 556, 51 (2013).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the financial support from the Opening Project of Guangdong Key Laboratory for Advanced Metallic Materials processing, South China University of Technology (GJ201601) and from the US Army Research Office (W911NF-16-1-0269), and Alexander von Humboldt Research Award for Senior Researchers. We would also like to thank Robert E. Delaney for his assistance with magnetic data analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrique J. Lavernia.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, Z., MacDonald, B.E., Monson, T.C. et al. Influence of heat treatment on microstructure, mechanical behavior, and soft magnetic properties in an fcc-based Fe29Co28Ni29Cu7Ti7 high-entropy alloy. Journal of Materials Research 33, 2214–2222 (2018). https://doi.org/10.1557/jmr.2018.161

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.161

Navigation