Skip to main content
Log in

Nanoindentation and nanoscratch behavior of ZnO:Pr thin films deposited by DC sputtering

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Mechanical properties of Pr (praseodymium)-doped ZnO thin films, deposited on a corning glass substrate and fused quartz at different deposition pressures using DC sputtering were investigated. Crystalline growth in Pr-doped ZnO thin films is more pronounced and improves at 10 mtorr deposition pressure. However, lower sputtering deposition pressure evoked deposition rates to the formation of polycrystalline films emerged in several crystal planes. Pr ions incorporated in the ZnO host lattice was examined by X-ray photoelectron spectroscopy (XPS), AFM, and FESEM. XPS spectroscopy revealed the presence of Pr3+ and Pr4+ at the ZnO surface layer and it was in tandem with EDS mapping. Nanoindentation prior to scratch testing is used for analyzing deformation characteristics. Pr-doped ZnO thin films exhibit better hardness (9.89 ± 0.14 GPa) and Young’s modulus (112.12 ± 3.45 GPa) on the glass substrate. The crack propagation resistance parameter of the films was evaluated using initial critical load, Lc1 ∼ 2250.5 µN for the crack initiation and upper critical load Lc2 ∼ 2754.5 µN for film failure. Better crack propagation resistance was observed for films deposited at 10 mtorr sputtering pressure on both substrates, attributed to better crystalline nature of the films.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S-J. Cho, and H. Morkoc: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005).

    Article  CAS  Google Scholar 

  2. C.F. Klingshirn, A. Waag, A. Hoffmann, and J. Geurts: Zinc Oxide: From Fundamental Properties towards Novel Applications (Springer Science & Business Media, Germany, 2010).

    Book  Google Scholar 

  3. D.P. Norton, Y.W. Heo, M.P. Ivill, K. Ip, S.J. Pearton, M.F. Chisholm, and T. Steiner: ZnO: Growth, doping & processing. Mater. Today 7, 34 (2004).

    Article  CAS  Google Scholar 

  4. D. Daksh and Y.K. Agrawal: Rare earth-doped zinc oxide nanostructures: A review. Rev. Nanosci. Nanotechnol. 5, 1 (2016).

    Article  CAS  Google Scholar 

  5. V. Bhardwaj, R. Chowdhury, and R. Jayaganthan: Adhesion strength and nanomechanical characterization of ZnO thin films. J. Mater. Res. 32, 1432 (2017).

    Article  CAS  Google Scholar 

  6. S. Marouf, A. Beniaiche, K. Kardarian, M.J. Mendes, O. Sanchez-Sobrado, H. Águas, E. Fortunato, and R. Martins: Low-temperature spray-coating of high-performing ZnO:Al films for transparent electronics. J. Anal. Appl. Pyrolysis 127, 299 (2017).

    Article  CAS  Google Scholar 

  7. J. Perrière, N. Jedrecy, E. Millon, C. Cachoncinlle, A. Talbi, V. Demange, M. Guilloux-Viry, and M. Nistor: Epitaxial growth of non-polar ZnO films on MgO substrate. Thin Solid Films 652, 34 (2018).

    Article  CAS  Google Scholar 

  8. C. Lin, R. Chen, Y. Lin, S. Wang, L. Chen, K. Chen, M. Wen, M. Chou, and L. Chang: Photoconduction properties and anomalous power-dependent quantum efficiency in non-polar ZnO epitaxial films grown by chemical vapor deposition. Appl. Phys. Lett. 110, 052101 (2017).

    Article  CAS  Google Scholar 

  9. W-C. Hsieh, P.V. Wadekar, H-H. Liu, C-H. Lee, C-F. Chang, L-W. Tu, S-T. You, Q.Y. Chen, H-C. Huang, and N-J. Ho: Water-modulated oxidation in the growth of m-ZnO epitaxial thin film by atomic layer deposition. J. Vac. Sci. Technol., A 35, 021511 (2017).

    Article  CAS  Google Scholar 

  10. A.A. Jacob, L. Balakrishnan, S. Meher, K. Shambavi, and Z. Alex: Structural, optical and photodetection characteristics of Cd alloyed ZnO thin film by spin coating. J. Alloys Compd. 695, 3753 (2017).

    Article  CAS  Google Scholar 

  11. P. Kelly and R. Arnell: Magnetron sputtering: A review of recent developments and applications. Vacuum 56, 159 (2000).

    Article  CAS  Google Scholar 

  12. A. Dakhel: Nanocrystalline Pr-doped ZnO insulator for metal–insulator–Si Schottky diodes. J. Cryst. Growth 311, 4183 (2009).

    Article  CAS  Google Scholar 

  13. S. Anandan, A. Vinu, K.L.P. Sheeja Lovely, N. Gokulakrishnan, P. Srinivasu, T. Mori, V. Murugesan, V. Sivamurugan, and K. Ariga: Photocatalytic activity of La-doped ZnO for the degradation of monocrotophos in aqueous suspension. J. Mol. Catal. A: Chem. 266, 149 (2007).

    Article  CAS  Google Scholar 

  14. J. Zheng, J. Song, Q. Jiang, and J. Lian: Enhanced UV emission of Y-doped ZnO nanoparticles. Appl. Surf. Sci. 258, 6735 (2012).

    Article  CAS  Google Scholar 

  15. D. Xu, K. He, R. Yu, Y. Tong, J. Qi, X. Sun, Y. Yang, H. Xu, H. Yuan, and J. Ma: Microstructure and electrical properties of praseodymium oxide doped Bi2O3 based ZnO varistor films. Mater. Technol. 30, A24 (2015).

    Article  CAS  Google Scholar 

  16. C-C. Hsiao and S-Y. Yu: Electrode layout of ZnO pyroelectric sensors. J. Mech. Sci. Technol. 25, 2835 (2011).

    Article  Google Scholar 

  17. T. Senda and R.C. Bradt: Grain growth in sintered ZnO and ZnO–Bi2O3 ceramics. J. Am. Ceram. Soc. 73, 106 (1990).

    Article  CAS  Google Scholar 

  18. Y. Wang, Z. Peng, Q. Wang, C. Wang, and X. Fu: High-performance varistors simply by hot-dipping zinc oxide thin films in Pr6O11: Influence of temperature. Sci. Rep. 7, 41994 (2017).

    Article  CAS  Google Scholar 

  19. H. Li, J. Meng, Y. Liu, B. Zhang, and G. Cheng: Effect of Pr doping on the photoelectric properties of ZnO transparent conducting thin films. Mater. Rev. 29, 11–15 (2015).

    Google Scholar 

  20. N. Divya and P. Pradyumnan: Photoluminescence quenching and photocatalytic enhancement of Pr doped ZnO nanocrystals. Bull. Mater. Sci. 40, 1405 (2017).

    Article  CAS  Google Scholar 

  21. M. Balestrieri, M. Gallart, M. Ziegler, P. Bazylewski, G. Ferblantier, G. Schmerber, G. Chang, P. Gilliot, D. Muller, and A. Slaoui: Luminescent properties and energy transfer in Pr3+ doped and Pr3+–Yb3+ Co-doped ZnO thin films. J. Phys. Chem. C 118, 13775 (2014).

    Article  CAS  Google Scholar 

  22. S. Bull: Nanoindentation of coatings. J. Phys. D: Appl. Phys. 38, R393 (2005).

    Article  CAS  Google Scholar 

  23. C. Shi, H. Zhao, H. Huang, S. Wan, Z. Ma, C. Geng, and L. Ren: Effects of probe tilt on nanoscratch results: An investigation by finite element analysis. Tribol. Int. 60, 64 (2013).

    Article  Google Scholar 

  24. K. Fu, L. Chang, C. Yang, L. Sheppard, H. Wang, M. Maandal, and L. Ye: Plastic behaviour of high-strength lightweight Al/Ti multilayered films. J. Mater. Sci. 52, 13956 (2017).

    Article  CAS  Google Scholar 

  25. S. Kucheyev, J. Bradby, J. Williams, C. Jagadish, and M. Swain: Mechanical deformation of single-crystal ZnO. Appl. Phys. Lett. 80, 956 (2002).

    Article  CAS  Google Scholar 

  26. N-R. Kang, Y-C. Kim, H. Jeon, S.K. Kim, J-i. Jang, H.N. Han, and J-Y. Kim: Wall-thickness-dependent strength of nanotubular ZnO. Sci. Rep. 7, 4327 (2017).

    Article  CAS  Google Scholar 

  27. N. Tiwary, A. Kushagra, M. Kandpal, and V.R. Rao: Experimental and theoretical analyses of effect of ZnO nanowire growth on mechanical properties of microcantilevers for dynamic sensing applications. In SENSORS, 2016 (IEEE, USA, 2016); p. 1.

    Google Scholar 

  28. R. Juday, E.M. Silva, J.Y. Huang, P.G. Caldas, R. Prioli, and F. Ponce: Strain-related optical properties of ZnO crystals due to nanoindentation on various surface orientations. J. Appl. Phys. 113, 183511 (2013).

    Article  CAS  Google Scholar 

  29. N. Yuan, S. Wang, C. Tan, X. Wang, G. Chen, and J. Ding: The influence of deposition temperature on growth mode, optical and mechanical properties of ZnO films prepared by the ALD method. J. Cryst. Growth 366, 43 (2013).

    Article  CAS  Google Scholar 

  30. C-Y. Yen, S-R. Jian, G-J. Chen, C-M. Lin, H-Y. Lee, W-C. Ke, Y-Y. Liao, P-F. Yang, C-T. Wang, and Y-S. Lai: Influence of annealing temperature on the structural, optical and mechanical properties of ALD-derived ZnO thin films. Appl. Surf. Sci. 257, 7900 (2011).

    Article  CAS  Google Scholar 

  31. T-H. Fang, W-J. Chang, and C-M. Lin: Nanoindentation characterization of ZnO thin films. Mater. Sci. Eng., A 452–453, 715 (2007).

    Article  CAS  Google Scholar 

  32. S-K. Wang, T-C. Lin, S-R. Jian, J-Y. Juang, J.S-C. Jang, and J-Y. Tseng: Effects of post-annealing on the structural and nanomechanical properties of Ga-doped ZnO thin films deposited on glass substrate by rf-magnetron sputtering. Appl. Surf. Sci. 258, 1261 (2011).

    Article  CAS  Google Scholar 

  33. S. Zhao, Y. Zhou, Y. Liu, K. Zhao, S. Wang, W. Xiang, Z. Liu, P. Han, Z. Zhang, and Z. Chen: Enhanced hardness in B-doped ZnO thin films on fused quartz substrates by pulsed-laser deposition. Appl. Surf. Sci. 253, 726 (2006).

    Article  CAS  Google Scholar 

  34. M. Venkaiah and R. Singh: Effect of thickness on structural, optical and mechanical properties of Mn doped ZnO nanocrystalline thin films RF sputtered in nitrogen gas environment. Superlattices Microstruct. 72, 164 (2014).

    Article  CAS  Google Scholar 

  35. Z. Yun, W. Yue, W. Peng-Fei, L. Hong-Yu, and W. Shou-Yu: Optical and mechanical properties of transparent conductive Al-doped ZnO films deposited by the sputtering method. Chin. Phys. Lett. 29, 038103 (2012).

    Article  Google Scholar 

  36. Y-C. Huang and S-Y. Chang: Substrate effect on mechanical characterizations of aluminum-doped zinc oxide transparent conducting films. Surf. Coat. Technol. 204, 3147 (2010).

    Article  CAS  Google Scholar 

  37. J. Bradby, S. Kucheyev, J. Williams, C. Jagadish, M. Swain, P. Munroe, and M. Phillips: Contact-induced defect propagation in ZnO. Appl. Phys. Lett. 80, 4537 (2002).

    Article  CAS  Google Scholar 

  38. L. Sagalowicz and G.R. Fox: Planar defects in ZnO thin films deposited on optical fibers and flat substrates. J. Mater. Res. 14, 1876 (1999).

    Article  CAS  Google Scholar 

  39. B.D. Cullity and J.W. Weymouth: Elements of X-ray diffraction. Am. J. Phys. 25, 394 (1957).

    Article  Google Scholar 

  40. A. Stokes and A. Wilson: The diffraction of X-rays by distorted crystal aggregates-I. Proc. Phys. Soc., London, Sect. A 56, 174 (1944).

    Article  CAS  Google Scholar 

  41. L. Kolodziejczyk, W. Szymanski, D. Batory, and A. Jedrzejczak: Nanotribology of silver and silicon doped carbon coatings. Diamond Relat. Mater. 67, 8 (2016).

    Article  CAS  Google Scholar 

  42. A. Gouldstone, H-J. Koh, K-Y. Zeng, A. Giannakopoulos, and S. Suresh: Discrete and continuous deformation during nanoindentation of thin films. Acta Mater. 48, 2277 (2000).

    Article  CAS  Google Scholar 

  43. T. Tsui, W. Oliver, and G. Pharr: Indenter geometry effects on the measurement of mechanical properties by nanoindentation with sharp indenters. MRS Online Proc. Libr. 436, 147 (1996).

    Article  Google Scholar 

  44. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).

    Article  CAS  Google Scholar 

  45. S. Zhang: Nanostructured Thin Films and Coatings: Mechanical Properties (CRC Press, Taylor & Francis Group, Boca Raton, Florida, 2010).

    Book  Google Scholar 

  46. A. Fischer-Cripps: Nanoindentation (Springer, New York, 2004).

    Book  Google Scholar 

  47. Q. Tian and H. Liu: Electrophoretic deposition and characterization of nanocomposites and nanoparticles on magnesium substrates. Nanotechnology 26, 175102 (2015).

    Article  CAS  Google Scholar 

  48. H-Y. He: Microstructural, optical and electrical properties of ZnO:Pr thin films: Pr-doping level effect. Micro Nanosyst. 8, 19 (2016).

    Article  CAS  Google Scholar 

  49. V. Dave, P. Dubey, H. Gupta, and R. Chandra: Influence of sputtering pressure on the structural, optical and hydrophobic properties of sputtered deposited HfO2 coatings. Thin Solid Films 549, 2 (2013).

    Article  CAS  Google Scholar 

  50. D. Bao, H. Gu, and A. Kuang: Sol–gel-derived c-axis oriented ZnO thin films. Thin Solid Films 312, 37 (1998).

    Article  CAS  Google Scholar 

  51. M.S. Kim, K.G. Yim, M.Y. Cho, J.Y. Leem, D.Y. Lee, J.S. Kim, J.S. Kim, and J.S. Son: Post-annealing effects on the structural and the optical properties of ZnO thin films grown by using the hydrothermal method. J. Korean. Phys. Soc 58, 515 (2011).

    Article  CAS  Google Scholar 

  52. L. Armelao, G. Bottaro, M. Pascolini, M. Sessolo, E. Tondello, M. Bettinelli, and A. Speghini: Structure–luminescence correlations in europium-doped sol–gel ZnO nanopowders. J. Phys. Chem. C 112, 4049 (2008).

    Article  CAS  Google Scholar 

  53. C. Wang, X. Tan, S. Chen, R. Yuan, F. Hu, D. Yuan, and Y. Xiang: Highly-sensitive cholesterol biosensor based on platinum–gold hybrid functionalized ZnO nanorods. Talanta 94, 263 (2012).

    Article  CAS  Google Scholar 

  54. T. Basu, M. Kumar, S. Nandy, B. Satpati, C.P. Saini, A. Kanjilal, and T. Som: Thickness-dependent blue shift in the excitonic peak of conformally grown ZnO:Al on ion-beam fabricated self-organized Si ripples. J. Appl. Phys. 118, 104903 (2015).

    Article  CAS  Google Scholar 

  55. J.M. Phillips: Substrate selection for thin-film growth. MRS Bull. 20, 35 (1995).

    Article  CAS  Google Scholar 

  56. A. Banerjee, C. Ghosh, K. Chattopadhyay, H. Minoura, A.K. Sarkar, A. Akiba, A. Kamiya, and T. Endo: Low-temperature deposition of ZnO thin films on PET and glass substrates by DC-sputtering technique. Thin Solid Films 496, 112 (2006).

    Article  CAS  Google Scholar 

  57. T. Sung, J. Huang, and H. Chen: Mechanical response of polar/non-polar ZnO under low dimensional stress. Appl. Phys. Lett. 102, 241901 (2013).

    Article  CAS  Google Scholar 

  58. V. Coleman, J. Bradby, C. Jagadish, P. Munroe, Y. Heo, S. Pearton, D. Norton, M. Inoue, and M. Yano: Mechanical properties of ZnO epitaxial layers grown on a- and c-axis sapphire. Appl. Phys. Lett. 86, 203105 (2005).

    Article  CAS  Google Scholar 

  59. R. Navamathavan, K-K. Kim, D-K. Hwang, S-J. Park, J-H. Hahn, T.G. Lee, and G-S. Kim: A nanoindentation study of the mechanical properties of ZnO thin films on (0001) sapphire. Appl. Surf. Sci. 253, 464 (2006).

    Article  CAS  Google Scholar 

  60. L-Y. Lin, M-C. Jeong, D-E. Kim, and J-M. Myoung: Micro/nanomechanical properties of aluminum-doped zinc oxide films prepared by radio frequency magnetron sputtering. Surf. Coat. Technol. 201, 2547 (2006).

    Article  CAS  Google Scholar 

  61. S. Kataria, S. Goyal, S. Dash, R. Sandhya, M. Mathew, and A. Tyagi: Evaluation of nano-mechanical properties of hard coatings on a soft substrate. Thin Solid Films 522, 297 (2012).

    Article  CAS  Google Scholar 

  62. S. Kataria, S. Goyal, S. Dash, and A.K. Tyagi: Nanomechanical characterization of thermally evaporated Cr thin films—FE analysis of the substrate effect. Thin Solid Films 519, 312 (2010).

    Article  CAS  Google Scholar 

  63. T.K. Roy: Assessing hardness and fracture toughness in sintered zinc oxide ceramics through indentation technique. Mater. Sci. Eng., A 640, 267 (2015).

    Article  CAS  Google Scholar 

  64. G. Patriarche, F. Glas, G. Le Roux, L. Largeau, A. Mereuta, A. Ougazzaden, and J. Benchimol: TEM study of the morphological and compositional instabilities of InGaAsP epitaxial structures. J. Cryst. Growth 221, 12 (2000).

    Article  CAS  Google Scholar 

  65. J. Li, K.J. Van Vliet, T. Zhu, S. Yip, and S. Suresh: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307 (2002).

    Article  CAS  Google Scholar 

  66. J. Musil: Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surf. Coat. Technol. 207, 50 (2012).

    Article  CAS  Google Scholar 

  67. P. Benjamin and C. Weaver: Measurement of adhesion of thin films. Proc. R. Soc. London, Ser. A 254, 163 (1960).

    Article  CAS  Google Scholar 

  68. V. Bhardwaj, R. Chowdhury, and R. Jayaganthan: Nanomechanical and microstructural characterization of sputter deposited ZnO thin films. Appl. Surf. Sci. 389, 1023 (2016).

    Article  CAS  Google Scholar 

  69. S. Zhang, D. Sun, Y. Fu, and H. Du: Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiN/a-SiNx thin films. Thin Solid Films 447, 462 (2004).

    Article  Google Scholar 

  70. M.S. Kabir, P. Munroe, Z. Zhou, and Z. Xie: Scratch adhesion and tribological behaviour of graded Cr/CrN/CrTiN coatings synthesized by closed-field unbalanced magnetron sputtering. Wear 380–381, 163 (2017).

    Article  CAS  Google Scholar 

  71. W. Ni, Y-T. Cheng, M. Lukitsch, A.M. Weiner, L.C. Lev, and D.S. Grummon: Novel layered tribological coatings using a superelastic NiTi interlayer. Wear 259, 842 (2005).

    Article  CAS  Google Scholar 

  72. B. Bhushan and X. Li: Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices. J. Mater. Res. 12, 54 (1997).

    Article  CAS  Google Scholar 

  73. S-R. Jian, I-J. Teng, P-F. Yang, Y-S. Lai, J-M. Lu, J-G. Chang, and S-P. Ju: Surface morphological and nanomechanical properties of PLD-derived ZnO thin films. Nanoscale Res. Lett. 3, 186 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors would like to thank Prof. Ramesh Chandra for providing sputtering facility at Institute Instrumentation center, IIT Roorkee, India, and Material Research Center, MNIT Jaipur, India, for XPS analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rengaswamy Jayaganthan.

Supplementary Material

43578_2018_33172533_MOESM1_ESM.docx

Supplementary Information: Nanoindentation and Nanoscratch Behavior of ZnO:Pr Thin films Deposited by DC-Sputtering (approximately 272 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, V., Kumar, A., Chowdhury, R. et al. Nanoindentation and nanoscratch behavior of ZnO:Pr thin films deposited by DC sputtering. Journal of Materials Research 33, 2533–2544 (2018). https://doi.org/10.1557/jmr.2018.154

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.154

Navigation