Development and exploration of refractory high entropy alloys—A review

Abstract

Open literature publications, in the period from 2010 to the end of January 2018, on refractory high entropy alloys (RHEAs) and refractory complex concentrated alloys (RCCAs) are reviewed. While RHEAs, by original definition, are alloys consisting of five or more principal elements with the concentration of each of these elements between 5 and 35 at.%, RCCAs can contain three or more principal elements and the element concentration can be greater than 35%. The 151 reported RHEAs/RCCAs are analyzed based on their composition, processing methods, microstructures, and phases. Mechanical properties, strengthening and deformation mechanisms, oxidation, and corrosion behavior, as well as tribology, of RHEA/RCCAs are summarized. Unique properties of some of these alloys make them promising candidates for high temperature applications beyond Ni-based superalloys and/or conventional refractory alloys. Methods of development and exploration, future directions of research and development, and potential applications of RHEAs are discussed.

This is a preview of subscription content, access via your institution.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

References

  1. 1.

    B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Microstructural development in equiatomic multicomponent alloys. Mat. Sci. Eng., A 375–377, 213 (2004).

    Article  CAS  Google Scholar 

  2. 2.

    J-W. Yeh, S-K. Chen, J-W. Gan, S-J. Lin, T-S. Chin, T-T. Shun, C-H. Tsau, and S-Y. Chang: Formation of simple crystal structures in Cu–Co–Ni–Cr–Al–Fe–Ti–V alloys with multiprincipal metallic elements. Metall. Mater. Trans. A 35, 2533 (2004).

    Article  Google Scholar 

  3. 3.

    D.B. Miracle and O.N. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).

    CAS  Google Scholar 

  4. 4.

    S. Gorsse, D.B. Miracle, and O.N. Senkov: Mapping the world of complex concentrated alloys. Acta Mater. 135, 177 (2017).

    CAS  Article  Google Scholar 

  5. 5.

    J-W. Yeh, S-K. Chen, S-J. Lin, J-Y. Gan, T-S. Chin, T-T. Shun, C-H. Tsau, and S-Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    CAS  Article  Google Scholar 

  6. 6.

    O.N. Senkov, G.B. Wilks, D.B. Miracle, C.P. Chuang, and P.K. Liaw: Refractory high-entropy alloys. Intermetallics 18, 1758 (2010).

    CAS  Article  Google Scholar 

  7. 7.

    O.N. Senkov, G.B. Wilks, J.M. Scott, and D.B. Miracle: Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 19, 698 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    O.N. Senkov, J.M. Scott, S.V. Senkova, D.B. Miracle, and C.F. Woodward: Microstructure and room temperature properties of a high-entropy TaNbHfZrTi alloy. J. Alloy. Comp. 509, 6043 (2011).

    CAS  Article  Google Scholar 

  9. 9.

    O.N. Senkov, J.M. Scott, S.V. Senkova, F. Meisenkothen, D.B. Miracle, and C.F. Woodward: Microstructure and elevated temperature properties of a refractory TaNbHfZrTi alloy. J. Mater. Sci. 47, 4062 (2012).

    CAS  Article  Google Scholar 

  10. 10.

    C-C. Juan, M-H. Tsai, C-W. Tsai, C-M. Lin, W-R. Wang, C-C. Yang, S-K. Chen, S-J. Lin, and J-W. Yeh: Enhanced mechanical properties of HfMoTaTiZr and HfMoNbTaTiZr refractory high-entropy alloys. Intermetallics 62, 76 (2015).

    CAS  Article  Google Scholar 

  11. 11.

    O.N. Senkov and S.L. Semiatin: Microstructure and properties of a refractory high-entropy alloy after cold working. J. Alloy. Comp. 649, 1110 (2015).

    CAS  Article  Google Scholar 

  12. 12.

    C-M. Lin, C-C. Juan, C-H. Chang, C-W. Tsai, and J-W. Yeh: Effect of Al addition on mechanical properties and microstructure of refractory AlxHfNbTaTiZr alloys. J. Alloy. Comp. 624, 100 (2015).

    CAS  Article  Google Scholar 

  13. 13.

    H. Song, F. Tian, and D. Wang: Thermodynamic properties of refractory high entropy alloys. J. Alloys Compd. 682, 773 (2016).

    CAS  Article  Google Scholar 

  14. 14.

    C-C. Juan, M-H. Tsai, C-W. Tsai, W-L. Hsu, C-M. Lin, S-K. Chen, S-J. Lin, and J-W. Yeh: Simultaneously increasing the strength and ductility of a refractory high-entropy alloy via grain refining. Mater. Lett. 184, 200 (2016).

    CAS  Article  Google Scholar 

  15. 15.

    N.D. Stepanov, N.Y. Yurchenko, S.V. Zherebtsov, M.A. Tikhonovsky, and G.A. Salishchev: Aging behavior of the HfNbTaTiZr high entropy alloy. Mater. Lett. 211, 87 (2018).

    CAS  Article  Google Scholar 

  16. 16.

    J. Jayaraj, C. Thinaharan, S. Ningshen, C. Mallika, and U. Kamachi Mudali: Corrosion behavior and surface film characterization of TaNbHfZrTi high entropy alloy in aggressive nitric acid medium. Intermetallics 89, 123 (2017).

    CAS  Article  Google Scholar 

  17. 17.

    S. Zheng, W. Feng, and S. Wang: Elastic properties of high entropy alloys by MaxEnt approach. Comput. Mater. Sci. 142, 332 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    J.P. Couzinie, L. Lilensten, Y. Champion, G. Dirras, L. Perriere, and I. Guillot: On the room temperature deformation mechanisms of a TiZrHfNbTa refractory high-entropy alloy. Mater. Sci. Eng., A 645, 255 (2015).

    CAS  Article  Google Scholar 

  19. 19.

    J.P. Couzinie, G. Dirras, L. Perriere, T. Chauveau, E. Leroy, Y. Champion, and I. Guillot: Microstructure of a near-equimolar refractory high-entropy alloy. Mater. Lett. 126, 285 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    G. Dirras, J. Gubicza, A. Heczel, L. Lilensten, J.P. Couzinie, L. Perriere, I. Guillot, and A. Hocini: Microstructural investigation of plastically deformed Ti20Zr20Hf20Nb20Ta20 high entropy alloy by X-ray diffraction and transmission electron microscopy. Mater. Charact. 108, 1 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    C-C. Juan, K-K. Tseng, W-L. Hsu, M-H. Tsai, C-W. Tsai, C-M. Lin, S-K. Chen, S-J. Lin, and J-W. Yeh: Solution strengthening of ductile refractory HfMoxNbTaTiZr high-entropy alloys. Mater. Lett. 175, 284 (2016).

    CAS  Article  Google Scholar 

  22. 22.

    G. Dirras, H. Couque, L. Lilensten, A. Heczel, D. Tingaud, J.P. Couzinie, L. Perriere, J. Gubicza, and I. Guillot: Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions. Mater. Charact. 111, 106 (2016).

    CAS  Article  Google Scholar 

  23. 23.

    G. Dirras, L. Lilensten, P. Djemia, M. Laurent-Brocq, D. Tingaud, J.P. Couzinie, L. Perriere, T. Chauveau, and I. Guillot: Elastic and plastic properties of as-cast equimolar TiHfZrTaNb high-entropy alloy. Mater. Sci. Eng., A 654, 30 (2016).

    CAS  Article  Google Scholar 

  24. 24.

    B. Schuh, B. Volker, J. Todt, N. Schell, L. Perriere, J. Li, J.P. Couzinie, and A. Hohenwarter: Thermodynamic instability of a nanocrystalline, single-phase TiZrNbHfTa alloy and its impact on the mechanical properties. Acta Mater. 142, 201 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    L. Lilensten, J-P. Couzinie, L. Perriere, A. Hocini, C. Keller, G. Dirras, and I. Guillot: Study of a bcc multi-principal element alloy: Tensile and simple shear properties and underlying deformation mechanisms. Acta Mater. 142, 131 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    H. Dobbelstein, M. Thiele, E.L. Gurevich, E.P. George, and A. Ostendorf: Direct metal deposition of refractory high entropy alloy MoNbTaW. Physics Procedia. 83, 624 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Z.D. Han, N. Chen, S.F. Zhao, L.W. Fan, G.N. Yang, Y. Shao, and K.F. Yao: Effect of Ti additions on mechanical properties of NbMoTaW and VNbMoTaW refractory high entropy alloys. Intermetallics 84, 153 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    X.B. Feng, J.Y. Zhang, Y.Q. Wang, Z.Q. Hou, K. Wu, G. Liu, and J. Sun: Size effects on the mechanical properties of nanocrystalline NbMoTaW refractory high entropy alloy thin films. Int. J. Plast. 95, 264 (2017).

    CAS  Article  Google Scholar 

  29. 29.

    X. Feng, J. Zhang, Z. Xia, W. Fu, K. Wu, G. Liu, and J. Sun: Stable nanocrystalline NbMoTaW high entropy alloy thin films with excellent mechanical and electrical properties. Mater. Lett. 210, 84 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Z.D. Han, H.W. Luan, X. Liu, N. Chen, X.Y. Li, Y. Shao, and K.F. Yao: Microstructures and mechanical properties of TixNbMoTaW refractory high-entropy alloys. Mater. Sci. Eng., A 712, 380 (2018).

    CAS  Article  Google Scholar 

  31. 31.

    Y. Zou, S. Maiti, W. Steurer, and R. Spolenak: Size-dependent plasticity in an Nb25Mo25Ta25W25 refractory high-entropy alloy. Acta Mater. 65, 85 (2014).

    CAS  Article  Google Scholar 

  32. 32.

    Y. Zou, P. Okle, H. Yu, T. Sumigawa, T. Kitamura, S. Maiti, W. Steurer, and R. Spolenak: Fracture properties of a refractory high-entropy alloy: In situ micro-cantilever and atom probe tomography studies. Scr. Mater. 128, 95 (2017).

    CAS  Article  Google Scholar 

  33. 33.

    M. Widom, W.P. Huhn, S. Maiti, and W. Steurer: Hybrid Monte Carlo/molecular dynamics simulation of a refractory metal high entropy alloy. Metall. Mater. Trans. A 45, 196 (2014).

    CAS  Article  Google Scholar 

  34. 34.

    W.Y. Wang, J. Wang, D. Lin, C. Zou, Y. Wu, Y. Hu, S-L. Shang, K.A. Darling, Y. Wang, X. Hui, J. Li, L.J. Kecskes, P.K. Liaw, and Z-K. Liu: Revealing the microstates of body-centered-cubic (BCC) equiatomic high entropy alloys. J. Phase Equilib. Diffus. 38, 404 (2017).

    CAS  Article  Google Scholar 

  35. 35.

    M.F. Del Grosso, G. Bozzolo, and H.O. Mosca: Modeling of high entropy alloys of refractory elements. Phys. B 407, 3285 (2012).

    Article  CAS  Google Scholar 

  36. 36.

    B. Zhang, M.C. Gao, Y. Zhang, and S.M. Guo: Senary refractory high-entropy alloy CrxMoNbTaVW. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 51, 193 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    A. Fernandez-Caballero, J.S. Wrobel, P.M. Mummery, and D. Nguyen-Manh: Short-range order in high entropy alloys: Theoretical formulation and application to Mo–Nb–Ta–V–W system. J. Phase Equilib. Diffus. 38, 391 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    A. Poulia, E. Georgatis, A. Lekatou, and A. Karantzalis: Dry-sliding wear response of MoTaWNbV high entropy alloy. Adv. Eng. Mater. 19, 1600535 (2017).

    Article  CAS  Google Scholar 

  39. 39.

    B. Kang, J. Lee, H.J. Ryu, and S.H. Hong: Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process. Mater. Sci. Eng., A 712, 616 (2018).

    CAS  Article  Google Scholar 

  40. 40.

    O.N. Senkov, S.V. Senkova, C. Woodward, and D.B. Miracle: Low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system: Microstructure and phase analysis. Acta Mater. 61, 1545 (2013).

    CAS  Article  Google Scholar 

  41. 41.

    O.N. Senkov, S.V. Senkova, D.B. Miracle, and C. Woodward: Mechanical properties of low-density, refractory multi-principal element alloys of the Cr–Nb–Ti–V–Zr system. Mat. Sci. Eng., A 565, 51 (2013).

    CAS  Article  Google Scholar 

  42. 42.

    F. Tian, L.K. Varga, N. Chen, J. Shen, and L. Vitos: Ab initio design of elastically isotropic TiZrNbMoVx high-entropy alloys. J. Alloys Compd. 599, 19 (2014).

    CAS  Article  Google Scholar 

  43. 43.

    T.M. Butler, K.J. Chaput, J.R. Dietrich, and O.N. Senkov: High temperature oxidation behaviors of equimolar NbTiZrV and NbTiZrCr refractory complex concentrated alloys (RCCAs). J. Alloys Compd. 729, 1004 (2017).

    CAS  Article  Google Scholar 

  44. 44.

    L-Y. Tian, G. Wang, J.S. Harris, D.L. Irving, J. Zhao, and L. Vitos: Alloying effect on the elastic properties of refractory high-entropy alloys. Mater. Des. 114, 243 (2017).

    CAS  Article  Google Scholar 

  45. 45.

    Y.D. Wu, Y.H. Cai, X.H. Chen, T. Wang, J.J. Si, L. Wang, Y.D. Wang, and X.D. Hui: Phase composition and solid solution strengthening effect in TiZrNbMoV high-entropy alloys. Mater. Des. 83, 651 (2015).

    CAS  Article  Google Scholar 

  46. 46.

    O.N. Senkov, S.V. Senkova, and C. Woodward: Effect of aluminum on the microstructure and properties of two refractory high-entropy alloys. Acta Mater. 68, 214 (2014).

    CAS  Article  Google Scholar 

  47. 47.

    O.N. Senkov, C. Woodward, and D.B. Miracle: Microstructure and properties of aluminum-containing refractory high-entropy alloys. JOM 66, 2030 (2014).

    CAS  Article  Google Scholar 

  48. 48.

    O.N. Senkov, D. Isheim, D.N. Seidman, and A.L. Pilchak: Development of a refractory high entropy superalloy. Entropy 18, 102 (2016).

    Article  CAS  Google Scholar 

  49. 49.

    J.K. Jensen, B.A. Welk, R.E.A. Williams, J.M. Sosa, D.E. Huber, O.N. Senkov, G.B. Viswanathan, and H.L. Fraser: Characterization of the microstructure of the compositionally complex alloy Al1Mo0.5Nb1Ta0.5Ti1Zr1. Scr. Mater. 121, 1 (2016).

    CAS  Article  Google Scholar 

  50. 50.

    J.K. Jensen: Characterization of a high strength, refractory high entropy alloy, AlMo0.5NbTa0.5TiZr. Ph.D. dissertation, The Ohio State University, Columbus, OH, 2017; pp. 1–202.

    Google Scholar 

  51. 51.

    O.N. Senkov, J.K. Jensen, A.L. Pilchak, D.B. Miracle, and H.L. Fraser: Compositional variation effects on the microstructure and properties of a refractory high-entropy superalloy AlMo0.5NbTa0.5TiZr. Mater. Des. 139, 498 (2018).

    CAS  Article  Google Scholar 

  52. 52.

    M.C. Gao, B. Zhang, S. Yang, and S.M. Guo: Senary refractory high-entropy alloy HfNbTaTiVZr. Metall. Mater. Trans. A 47, 3333 (2016).

    CAS  Article  Google Scholar 

  53. 53.

    S. Maiti and W. Steurer: Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater. 106, 87 (2016).

    CAS  Article  Google Scholar 

  54. 54.

    L. Lilensten, J.P. Couzinie, L. Perriere, J. Bourgon, N. Emery, and I. Guillot: New structure in refractory high-entropy alloys. Mater. Lett. 132, 123 (2014).

    CAS  Article  Google Scholar 

  55. 55.

    E. Fazakas, V. Zadorozhnyy, L.K. Varga, A. Inoue, D.V. Louzguine-Luzgin, F. Tian, and L. Vitos: Experimental and theoretical study of Ti20Zr20Hf20Nb20X20 (X = V or Cr) refractory high-entropy alloys. Int. J. Refract. Metals Hard Mater. 47, 131 (2014).

    CAS  Article  Google Scholar 

  56. 56.

    N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, and H.Z. Fu: Hot deformation characteristics and dynamic recrystallization of the MoNbHfZrTi refractory high-entropy alloy. Mater. Sci. Eng., A 651, 698 (2016).

    CAS  Article  Google Scholar 

  57. 57.

    O.A. Waseem, J. Lee, H.M. Lee, and H.J. Ryu: The effect of Ti on the sintering and mechanical properties of refractory high-entropy alloy TixWTaVCr fabricated via spark plasma sintering for fusion plasma-facing materials. Mater. Chem. Phys. 210, 87 (2018).

    CAS  Article  Google Scholar 

  58. 58.

    B. Liu, J. Wang, J. Chen, Q. Fang, and Y. Liu: Ultra-high strength TiC/refractory high-entropy-alloy composite prepared by powder metallurgy. JOM 69, 651 (2017).

    CAS  Article  Google Scholar 

  59. 59.

    C. Suryanarayana: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).

    CAS  Article  Google Scholar 

  60. 60.

    H. Huang, Y. Wu, J. He, H. Wang, X. Liu, K. An, W. Wu, and Z. Lu: Phase-transformation ductilization of brittle high-entropy alloys via metastability engineering. Adv. Mater. 29, 1701678 (2017).

    Article  CAS  Google Scholar 

  61. 61.

    H. Jiang, L. Jiang, Y.P. Lu, T.M. Wang, Z.Q. Cao, and T.J. Li: Microstructure and mechanical properties of the W–Ni–Co system refractory high-entropy alloys. Materials Science Forum. 816, 324 (2015).

    Article  Google Scholar 

  62. 62.

    H. Okamoto, P.R. Subramanian, and L. Kacprzak, eds.: Binary Alloy Phase Diagrams, 2nd ed. (ASM International, Materials Park, OH, 1990).

    Google Scholar 

  63. 63.

    P. Villars, A. Prince, and H. Okamoto: Handbook of Ternary Alloy Phase Diagrams (ASM International, Materials Park, OH, USA, 1995).

    Google Scholar 

  64. 64.

    H. Chen, A. Kauffmann, B. Gorr, D. Schliephake, C. Seemuller, J.N. Wagner, H.J. Christ, and M. Heilmaier: Microstructure and mechanical properties at elevated temperatures of a new Al-containing refractory high-entropy alloy Nb–Mo–Cr–Ti–Al. J. Alloys Compd. 661, 206 (2016).

    CAS  Article  Google Scholar 

  65. 65.

    N.D. Stepanov, N.Y. Yurchenko, E.S. Panina, M.A. Tikhonovsky, and S.V. Zherebtsov: Precipitation-strengthened refractory Al0.5CrNbTi2V0.5 high entropy alloy. Mater. Lett. 188, 162 (2017).

    CAS  Article  Google Scholar 

  66. 66.

    O.N. Senkov and C.F. Woodward: Microstructure and properties of a refractory NbCrMo0.5Ta0.5TiZr alloy. Mater. Sci. Eng., A 529, 311 (2011).

    CAS  Article  Google Scholar 

  67. 67.

    M.C. Gao, C.S. Carney, N. Doan, P.D. Jablonksi, J.A. Hawk, and D.E. Alman: Design of refractory high-entropy alloys. JOM 67, 2653 (2015).

    CAS  Article  Google Scholar 

  68. 68.

    N.Y. Yurchenko, N.D. Stepanov, S.V. Zherebtsov, M.A. Tikhonovsky, and G.A. Salishchev: Structure and mechanical properties of B2 ordered refractory AlNbTiVZrx (x = 0–1.5) high-entropy alloys. Mat. Sci. Eng., A 704, 82 (2017).

    CAS  Article  Google Scholar 

  69. 69.

    O.N. Senkov, S.V. Senkova, D.M. Dimiduk, C. Woodward, and D.B. Miracle: Oxidation behavior of a refractory NbCrMo0.5Ta0.5TiZr alloy. J. Mater. Sci. 47, 6522 (2012).

    CAS  Article  Google Scholar 

  70. 70.

    H. Okamoto: Phase Diagrams for Binary Alloys, 2nd ed. (ASM International, Materials Park, OH, USA, 2010).

    Google Scholar 

  71. 71.

    S. Sheikh, S. Shafeie, Q. Hu, J. Ahlstrom, C. Persson, J. Vesely, J. Zyka, U. Klement, and S. Guo: Alloy design for intrinsically ductile refractory high-entropy alloys. J. Appl. Phys. 120, 164902 (2016).

    Article  CAS  Google Scholar 

  72. 72.

    Y.D. Wu, Y.H. Cai, T. Wang, J.J. Si, J. Zhu, Y.D. Wang, and X.D. Hui: A refractory Hf25Nb25Ti25Zr25 high-entropy alloy with excellent structural stability and tensile properties. Mater. Lett. 130, 277 (2014).

    CAS  Article  Google Scholar 

  73. 73.

    S-P. Wang and J. Xu: TiZrNbTaMo high-entropy alloy designed for orthopedic implants: As-cast microstructure and mechanical properties. Mater. Sci. Eng., C 73, 80 (2017).

    CAS  Article  Google Scholar 

  74. 74.

    N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, Y.Q. Su, J.J. Guo, and H.Z. Fu: Microstructure and mechanical properties of refractory MoNbHfZrTi high-entropy alloy. Mater. Des. 81, 87 (2015).

    CAS  Article  Google Scholar 

  75. 75.

    H.W. Yao, J.W. Qiao, J.A. Hawk, H.F. Zhou, M.W. Chen, and M.C. Gao: Mechanical properties of refractory high-entropy alloys: Experiments and modeling. J. Alloy. Comp. 696, 1139 (2017).

    CAS  Article  Google Scholar 

  76. 76.

    L. Qi and D.C. Chrzan: Tuning ideal tensile strengths and intrinsic ductility of bcc refractory alloys. Phys. Rev. Lett. 112, 115503 (2014).

    Article  CAS  Google Scholar 

  77. 77.

    X. Yang, Y. Zhang, and P.K. Liaw: Microstructure and compressive properties of NbTiVTaAlx high entropy alloys. Procedia Eng. 36, 292 (2012).

    Article  CAS  Google Scholar 

  78. 78.

    D.X. Qiao, H. Jiang, X.X. Chang, Y.P. Lu, and T.J. Li: Microstructure and mechanical properties of VTaTiMoAlx refractory high entropy alloys. Mater. Sci. Forum 898, 638 (2017).

    Article  Google Scholar 

  79. 79.

    N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, and H.Z. Fu: Microstructure and mechanical properties of refractory high entropy (Mo0.5NbHf0.5ZrTi)BCC/M5Si3 in situ compound. J. Alloys Compd. 660, 197 (2016).

    CAS  Article  Google Scholar 

  80. 80.

    N.N. Guo, L. Wang, L.S. Luo, X.Z. Li, R.R. Chen, Y.Q. Su, J.J. Guo, and H.Z. Fu: Microstructure and mechanical properties of in-situ MC-carbide particulates-reinforced refractory high-entropy Mo0.5NbHf0.5ZrTi matrix alloy composite. Intermetallics 69, 74 (2016).

    CAS  Article  Google Scholar 

  81. 81.

    Y. Zhang, Y. Liu, Y. Li, X. Chen, and H. Zhang: Microstructure and mechanical properties of a refractory HfNbTiVSi0.5 high-entropy alloy composite. Mater. Lett. 174, 82 (2016).

    CAS  Article  Google Scholar 

  82. 82.

    Y. Liu, Y. Zhang, H. Zhang, N. Wang, X. Chen, H. Zhang, and Y. Li: Microstructure and mechanical properties of refractory HfMo0.5NbTiV0.5Six high-entropy composites. J. Alloy. Comp. 694, 869 (2017).

    CAS  Article  Google Scholar 

  83. 83.

    N.D. Stepanov, D.G. Shaysultanov, G.A. Salishchev, and M.A. Tikhonovsky: Structure and mechanical properties of a light-weight AlNbTiV high entropy alloy. Mater. Lett. 142, 153 (2015).

    CAS  Article  Google Scholar 

  84. 84.

    N.D. Stepanov, N.Y. Yurchenko, D.V. Skibin, M.A. Tikhonovsky, and G.A. Salishchev: Structure and mechanical properties of the AlCrxNbTiV (x = 0, 0.5, 1, 1.5) high entropy alloys. J. Alloy. Comp. 652, 266 (2015).

    CAS  Article  Google Scholar 

  85. 85.

    N.D. Stepanov, N.Y. Yurchenko, D.G. Shaysultanov, G.A. Salishchev, and M.A. Tikhonovsky: Effect of Al on structure and mechanical properties of AlxNbTiVZr (x = 0, 0.5, 1, 1.5) high entropy alloys. Mater. Sci. Technol. 31, 1184 (2015).

    CAS  Article  Google Scholar 

  86. 86.

    L. Lilensten, J-P. Couzinie, J. Bourgon, L. Perriere, G. Dirras, F. Prima, and I. Guillot: Design and tensile properties of a bcc Ti-rich high-entropy alloy with transformation-induced plasticity. Mater. Res. Lett. 5, 110 (2017).

    CAS  Article  Google Scholar 

  87. 87.

    C. Herrera, D. Ponge, and D. Raabe: Design of a novel Mn-based 1 GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability. Acta Mater. 59, 4653 (2011).

    CAS  Article  Google Scholar 

  88. 88.

    O. Grassel, L. Kruger, G. Frommeyer, and L.W. Meyer: High strength Fe–Mn–(Al,Si) TRIP/TWIP steel development—properties—applications. Int. J. Plast. 16, 1391 (2000).

    CAS  Article  Google Scholar 

  89. 89.

    F. Sun, J.Y. Zhang, M. Marteleur, T. Gloriant, P. Vermaut, D. Laille, P. Castany, C. Curfs, P.J. Jacques, and F. Prima: Investigation of early stage deformation mechanisms in a metastable β titanium alloy showing combined twinning-induced plasticity and transformation-induced plasticity effects. Acta Mater. 61, 6406 (2013).

    CAS  Article  Google Scholar 

  90. 90.

    M. Marteleur, F. Sun, T. Gloriant, P. Vermaut, P.J. Jacques, and F. Prima: On the design of new β-metastable titanium alloys with improved work hardening rate thanks to simultaneous TRIP and TWIP effects. Scripta Mater. 66, 749 (2012).

    CAS  Article  Google Scholar 

  91. 91.

    Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan: Metastable high-entropy dual-phase alloys overcome the strength–ductility trade-off. Nature 534, 227 (2016).

    CAS  Article  Google Scholar 

  92. 92.

    H. Chen, A. Kauffmann, S. Laube, I.C. Choi, R. Schwaiger, Y. Huang, K. Lichtenberg, F. Muller, B. Gorr, H.J. Christ, and M. Heilmaier: Contribution of lattice distortion to solid solution strengthening in a series of refractory high entropy alloys. Metall. Mater. Trans. A 49, 772 (2018).

    CAS  Article  Google Scholar 

  93. 93.

    R. Labusch: Statistical theories of solid solution hardening. Acta Metall. 20, 917 (1972).

    Article  Google Scholar 

  94. 94.

    L.A. Gypen and A. Deruyttere: The combination of atomic size and elastic modulus misfit interactions in solid solution hardening. Scripta Metall. 15, 815 (1981).

    CAS  Article  Google Scholar 

  95. 95.

    T. Suzuki: On the studies of solid solution hardening. Jpn. J. Appl. Phys. 20, 449 (1981).

    CAS  Article  Google Scholar 

  96. 96.

    I. Toda-Caraballo and P.E.J. Rivera-Diaz-Del-Castillo: Modelling solid solution hardening in high entropy alloys. Acta Mater. 85, 14 (2015).

    CAS  Article  Google Scholar 

  97. 97.

    H.A. Mooren, R. Taggart, and D.H. Polonis: A model for the prediction of lattice parameters of solid solutions. Metall. Trans. 2, 265 (1971).

    Article  Google Scholar 

  98. 98.

    H.W. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, and H.F. Zhou: MoNbTaV medium-entropy alloy. Entropy 18, 189 (2016).

    Article  CAS  Google Scholar 

  99. 99.

    S. Qiu, N. Miao, J. Zhou, Z. Guo, and Z. Sun: Strengthening mechanism of aluminum on elastic properties of NbVTiZr high-entropy alloys. Intermetallics 92, 7 (2018).

    CAS  Article  Google Scholar 

  100. 100.

    J.P. Hirth and J. Lothe: Theory of Dislocations, 2nd ed. (Krieger Publishing Co., Malabar, FL, USA, 1992).

    Google Scholar 

  101. 101.

    S.I. Rao, C. Varvenne, C. Woodward, T.A. Parthasarathy, D. Miracle, O.N. Senkov, and W.A. Curtin: Atomistic simulations of dislocations in a model BCC multicomponent concentrated solid solution alloy. Acta Mater. 125, 311 (2017).

    CAS  Article  Google Scholar 

  102. 102.

    B. Gorr, M. Azim, H.J. Christ, T. Mueller, D. Schliephake, and M. Heilmaier: Phase equilibria, microstructure, and high temperature oxidation resistance of novel refractory high-entropy alloys. J. Alloys Compd. 624, 270 (2015).

    CAS  Article  Google Scholar 

  103. 103.

    B. Gorr, F. Mueller, H-J. Christ, T. Mueller, H. Chen, A. Kauffmann, and M. Heilmaier: High temperature oxidation behavior of an equimolar refractory metal-based alloy 20Nb–20Mo–20Cr–20Ti–20Al with and without Si addition. J. Alloy. Comp. 688, 468 (2016).

    CAS  Article  Google Scholar 

  104. 104.

    B. Gorr, F. Muller, M. Azim, H-J. Christ, T. Muller, H. Chen, A. Kauffmann, and M. Heilmaier: High-temperature oxidation behavior of refractory high-entropy alloys: Effect of alloy composition. Oxid. Met. 88, 339 (2017). doi: https://doi.org/10.1007/s11085-016-9696-y.

    CAS  Article  Google Scholar 

  105. 105.

    C-H. Chang, M. Titus, and J-W. Yeh: Oxidation behavior between 700 and 1300 °C of refractory TiZrNbHfTa high-entropy alloys containing aluminum. Adv. Eng. Mater., 1700948 (2018). doi: https://doi.org/10.1002/adem.201700948.

  106. 106.

    O.N. Senkov: Oxidation Behavior of Al-containing Refractory High Entropy Alloys (Air Force Research Laboratory, Wright-Patterson AFB, OH, 2012).

    Google Scholar 

  107. 107.

    C.M. Liu, H.M. Wang, S.Q. Zhang, H.B. Tang, and A.L. Zhang: Microstructure and oxidation behavior of new refractory high entropy alloys. J. Alloys Compd. 583, 162 (2014).

    CAS  Article  Google Scholar 

  108. 108.

    J. Zheng, X. Hou, X. Wang, Y. Meng, X. Zheng, and L. Zheng: Isothermal oxidation mechanism of a newly developed Nb–Ti–V–Cr–Al–W–Mo–Hf alloy at 800–1200 °C. Int. J. Refract. Met. Hard Mater. 54, 322 (2016).

    CAS  Article  Google Scholar 

  109. 109.

    G.T.J. Mayo, W.H. Shepherd, and A.G. Thomas: Oxidation behaviour of niobium-chromium alloys. J. Less Common Met. 2, 223 (1960).

    Article  Google Scholar 

  110. 110.

    P. Kofstad: High Temperature Corrosion (Elsevier Applied Science, New York, NY, USA, 1988).

    Google Scholar 

  111. 111.

    D.J. Young: High Temperature Oxidation and Corrosion of Metals (Elsevier, Cambridge, MA, USA, 2016).

    Google Scholar 

  112. 112.

    J.H. Westbrook and D.L. Wood: “Pest” degradation in beryllides, silicides, aluminides, and related compounds. J. Nucl. Mater. 12, 208 (1964).

    CAS  Article  Google Scholar 

  113. 113.

    C.S. Giggins and F.S. Pettit: Oxidation of Ni–Cr–Al alloys between 1000° and 1200 °C. J. Electrochem. Soc. 118, 1782 (1971).

    CAS  Article  Google Scholar 

  114. 114.

    A. Poulia, E. Georgatis, A. Lekatou, and A.E. Karantzalis: Microstructure and wear behavior of a refractory high entropy alloy. Int. J. Refract. Metals Hard Mater. 57, 50 (2016).

    CAS  Article  Google Scholar 

  115. 115.

    C. Mathiou, A. Poulia, E. Georgatis, and A.E. Karantzalis: Microstructural features and dry—sliding wear response of MoTaNbZrTi high entropy alloy. Mater. Chem. Phys. 210, 126 (2018).

    CAS  Article  Google Scholar 

  116. 116.

    Y.X. Ye, C.Z. Liu, H. Wang, and T.G. Nieh: Friction and wear behavior of a single-phase equiatomic TiZrHfNb high-entropy alloy studied using a nanoscratch technique. Acta Mater. 147, 78 (2018).

    CAS  Article  Google Scholar 

  117. 117.

    S.N. Grigoriev, O.V. Sobol, V.M. Beresnev, I.V. Serdyuk, A.D. Pogrebnyak, D.A. Kolesnikov, and U.S. Nemchenko: Tribological characteristics of (TiZrHfVNbTa)N coatings applied using the vacuum arc deposition method. J. Frict. Wear 35, 359 (2014).

    Article  Google Scholar 

  118. 118.

    V. Braic, M. Balaceanu, M. Braic, A. Viadescu, S. Panseri, and A. Russo: Characterization of multi-principal-element (TiZrNbHfTa)N and (TiZrNbHfTa)C coatings for biomedical applications. J. Mech. Behav. Biomed. Mater. 10, 197 (2012).

    CAS  Article  Google Scholar 

  119. 119.

    D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M.D. Uchic, and J. Tiley: Exploration and development of high entropy alloys for structural applications. Entropy 16, 494 (2014).

    CAS  Article  Google Scholar 

  120. 120.

    O.N. Senkov, J.D. Miller, D.B. Miracle, and C. Woodward: Accelerated exploration of multi-principal element alloys for structural applications. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 50, 32 (2015).

    CAS  Article  Google Scholar 

  121. 121.

    D. Miracle, B. Majumdar, K. Wertz, and S. Gorsse: New strategies and tests to accelerate discovery and development of multi-principal element structural alloys. Scripta Mater. 127, 195 (2017).

    CAS  Article  Google Scholar 

  122. 122.

    O.N. Senkov, J.W. Miller, D.B. Miracle, and C. Woodward: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).

    CAS  Article  Google Scholar 

  123. 123.

    F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, and U.R. Kattner: An understanding of high entropy alloys from phase diagram calculations. CALPHAD: Comput. Coupling Phase Diagrams Thermochem. 45, 1 (2014).

    Article  CAS  Google Scholar 

  124. 124.

    M.C. Gao: Computational thermodynamic and kinetic modeling of high-entropy alloys and amorphous alloys. JOM 64, 828 (2012).

    Article  Google Scholar 

  125. 125.

    Thermo-Calc Software, Databases: Available at: http://www.thermocalc.com/products-services/databases/thermodynamic/.

  126. 126.

    CompuTherm Software, Databases: Available at: http://www.computherm.com/index.php?route=product/category&path=59_83.

  127. 127.

    O.N. Senkov, F. Zhang, and J.D. Miller: Phase composition of a CrMo0.5NbTa0.5TiZr high entropy alloy: Comparison of experimental and simulated data. Entropy 15, 3796 (2013).

    CAS  Article  Google Scholar 

  128. 128.

    B. Zhang, M.C. Gao, Y. Zhang, S. Yang, and S.M. Guo: Senary refractory high entropy alloy MoNbTaTiVW. Mater. Sci. Technol. 31, 1207 (2015).

    CAS  Article  Google Scholar 

  129. 129.

    H.W. Yao, J.W. Qiao, M.C. Gao, J.A. Hawk, S.G. Ma, H.F. Zhou, and Y. Zhang: NbTaV–(Ti,W) refractory high-entropy alloys: Experiments and modeling. Mater. Sci. Eng., A 674, 203 (2016).

    CAS  Article  Google Scholar 

  130. 130.

    Y.K. Mu, H.X. Liu, Y.H. Liu, X.W. Zhang, Y.H. Jiang, and T. Dong: An ab initio and experimental studies of the structure, mechanical parameters and state density on the refractory high-entropy alloy systems. J. Alloys Compd. 714, 668 (2017).

    CAS  Article  Google Scholar 

  131. 131.

    K. Wertz, J. Miller, and O. Senkov: Toward multi-principal component alloy discovery: Assessment of the CALPHAD thermodynamic databases for prediction of novel ternary alloy systems. J. Mater. Res. Published on-line 08 May 2018. https://doi.org/10.1557/jmr.2018.61 (2018).

  132. 132.

    Thermo-Calc Software. TCHEA2: TCS High Entropy Alloy Database. Available at: http://www.thermocalc.com/media/35873/tchea2_extended_info.pdf.

  133. 133.

    CompuTherm: PanHEA—Thermodynamic database for multi-component high entropy alloys. Available at: http://www.computherm.com/index.php?route=product/product&path=59_83&product_id=59.

  134. 134.

    P. Cao, X. Ni, F. Tian, L.K. Varga, and L. Vitos: Ab initio study of AlxMoNbTiV high-entropy alloys. J. Phys. Condens. Matter 27, 075401 (2015).

    Article  CAS  Google Scholar 

  135. 135.

    S.F. Pugh: XCII. Relations between the elastic moduli and the plastic properties of polycrystalline pure metals. Philos. Mag. 45, 823 (1954).

    CAS  Article  Google Scholar 

  136. 136.

    D.G. Pettifor: Theoretical predictions of structure and related properties of intermetallics. Mater. Sci. Technol. 8, 345 (1992).

    CAS  Article  Google Scholar 

  137. 137.

    H.Q. Song, F.Y. Tian, Q.M. Hu, L. Vitos, Y.D. Wang, J.A. Shen, and N.X. Chen: Local lattice distortion in high-entropy alloys. Phys. Rev. Mater. 1, 023404 (2017).

    Article  Google Scholar 

  138. 138.

    W.P. Huhn and M. Widom: Prediction of A2 to B2 phase transition in the high-entropy alloy Mo–Nb–Ta–W. JOM 65, 1772 (2013).

    CAS  Article  Google Scholar 

  139. 139.

    Y. Wang, M. Yan, Q. Zhu, W.Y. Wang, Y. Wu, X. Hui, R. Otis, S-L. Shang, Z-K. Liu, and L-Q. Chen: Computation of entropies and phase equilibria in refractory V–Nb–Mo–Ta–W high-entropy alloys. Acta Mater. 143, 88 (2018).

    CAS  Article  Google Scholar 

  140. 140.

    W.Y. Wang, S.L. Shang, Y. Wang, F. Han, K.A. Darling, Y. Wu, X. Xie, O.N. Senkov, J. Li, X.D. Hui, K.A. Dahmen, P.K. Liaw, L.J. Kecskes, and Z.K. Liu: Atomic and electronic basis for the serrations of refractory high-entropy alloys. npj Comput. Mater. 3, 23 (2017).

    Article  CAS  Google Scholar 

  141. 141.

    J.R. Davis: Metals Handbook, Desk Edition, 2nd ed. (ASM International, Metals Park, OH, USA, 1998).

    Book  Google Scholar 

  142. 142.

    D.B. Miracle: Critical assessment 14: High entropy alloys and their development as structural materials. Mater. Sci. Technol. 31, 1142 (2015).

    CAS  Article  Google Scholar 

  143. 143.

    J.R. Donoso and R.E. Reed-Hill: Slow strain rate embrittlement of niobium by oxygen. Metall. Trans. 7, 961 (1976).

    Article  Google Scholar 

  144. 144.

    C.T. Liu and H. Inoue: Internal oxidation and mechanical properties of TZM–Mo alloy. Metall. Trans. 5, 2515 (1974).

    CAS  Article  Google Scholar 

  145. 145.

    A. Kelly, W.R. Tyson, and A.H. Cotrell: Theoretical strength of crystals and the tip of a crack. Can. J. Phys. 45, 883 (1967).

    CAS  Article  Google Scholar 

  146. 146.

    A.S. Tetelman and J.A.J. McEvily: Fracture of Structural Materials (John Wiley & Sons, Inc., New York, NY, USA, 1967).

    Google Scholar 

  147. 147.

    Y. Zhang, X. Yang, and P.K. Liaw: Alloy design and properties optimization of high-entropy alloys. JOM 64, 830 (2012).

    CAS  Article  Google Scholar 

  148. 148.

    S.Y. Chen, X. Yang, K.A. Dahmen, P.K. Liaw, and Y. Zhang: Microstructures and crackling noise of AlxNbTiMoV high entropy alloys. Entropy 16, 870 (2014).

    Article  CAS  Google Scholar 

  149. 149.

    Y. Zhang, Y. Liu, Y. Li, X. Chen, and H. Zhang: Microstructure and mechanical properties of a new refractory HfNbSi0.5TiVZr high entropy alloy. Mater. Sci. Forum 849, 76 (2016).

    Article  Google Scholar 

  150. 150.

    M. Todai, T. Nagase, T. Hori, A. Matsugaki, A. Sekita, and T. Nakano: Novel TiNbTaZrMo high-entropy alloys for metallic biomaterials. Scripta Mater. 129, 65 (2017).

    CAS  Article  Google Scholar 

  151. 151.

    F. Muller, B. Gorr, H-J. Christ, H. Chen, A. Kauffmann, and M. Heilmaier: Effect of microalloying with silicon on high temperature oxidation resistance of novel refractory high-entropy alloy Ta–Mo–Cr–Ti–Al. Mater. High. Temp., 35, 168 (2018). doi: https://doi.org/10.1080/09603409.2017.1389115.

    Article  CAS  Google Scholar 

  152. 152.

    M. Zhang, X. Zhou, and J. Li: Microstructure and mechanical properties of a refractory CoCrMoNbTi high-entropy alloy. J. Mater. Eng. Perform. 26, 3657 (2017).

    CAS  Article  Google Scholar 

  153. 153.

    B. Zhang, Y. Mu, M.C. Gao, W.J. Meng, and S.M. Guo: On single-phase status and segregation of an as-solidified septenary refractory high entropy alloy. MRS Commun., 7, 78 (2017). doi: https://doi.org/10.1557/mrc.2017.7.

    Article  CAS  Google Scholar 

  154. 154.

    A. Poulia, E. Georgatis, C. Mathiou, and A.E. Karantzalis: Phase segregation discussion in a Hf25Zr30Ti20Nb15V10 high entropy alloy: The effect of the high melting point element. Mater. Chem. Phys. 210, 251 (2018). doi: https://doi.org/10.1016/j.matchemphys.2017.09.059.

    CAS  Article  Google Scholar 

  155. 155.

    A.E. Karantzalis, A. Poulia, E. Georgatis, and D. Petroglou: Phase formation criteria assessment on the microstructure of a new refractory high entropy alloy. Scr. Mater. 131, 51 (2017).

    CAS  Article  Google Scholar 

  156. 156.

    A.B. Melnick and V.K. Soolshenko: Thermodynamic design of high-entropy refractory alloys. J. Alloys Compd. 694, 223 (2017).

    CAS  Article  Google Scholar 

  157. 157.

    M. Zhang, X. Zhou, X. Yu, and J. Li: Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding. Surf. Coat. Technol. 311, 321 (2017).

    CAS  Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

Help of Dr. T. Butler in preparation of Sec. V.A (Oxidation behavior) is greatly appreciated. The authors appreciate discussions with J-W. Yeh, S.L. Semiatin, C. Woodward, P. Liaw, G. Dirras, S. Gorsse, K. Wertz, F. Zhang, and J. Miller. We sincerely thank the many friends and colleagues who contribute to the field and have shared their insights, ideas, and results freely. Work by O.N. Senkov was supported through the Air Force on-site contract FA8650-15-D-5230 managed by UES, Inc., Dayton, Ohio.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Oleg N. Senkov.

Additional information

This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/editor-manuscripts/.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Senkov, O.N., Miracle, D.B., Chaput, K.J. et al. Development and exploration of refractory high entropy alloys—A review. Journal of Materials Research 33, 3092–3128 (2018). https://doi.org/10.1557/jmr.2018.153

Download citation