Skip to main content
Log in

Equal channel angular extrusion for bulk processing of Fe–Co–2V soft magnetic alloys, part II: Texture analysis and magnetic properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In Part I, equal channel angular extrusion (ECAE) was demonstrated as a novel, simple-shear deformation process for producing bulk forms of the low ductility Fe–Co–2V (Hiperco 50A®) soft ferromagnetic alloy with refined grain sizes. Microstructures and mechanical properties were discussed. In this Part II contribution, the crystallographic textures and quasi-static magnetic properties of ECAE-processed Hiperco were characterized. The textures were of a simple-shear character defined by partial {110} and 〈111〉 fibers inclined relative to the extrusion direction, in agreement with the expectations for simple-shear deformation textures of BCC metals. These textures were observed throughout all processing conditions and only slightly reduced in intensity by subsequent recrystallization heat treatments. Characterization of the magnetic properties revealed a lower coercivity and higher permeability for ECAE-processed Hiperco specimens relative to the conventionally processed and annealed Hiperco bar. The effects of the resultant microstructure and texture on the coercivity and permeability magnetic properties are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. T. Sourmail: Near equiatomic FeCo alloys: Constitution, mechanical and magnetic properties. Prog. Mater. Sci. 50, 816 (2005).

    CAS  Google Scholar 

  2. R.S. Sundar and S.C. Deevi: Soft magnetic FeCo alloys: Alloy development, processing, and properties 50, 157–192 (2005).

    CAS  Google Scholar 

  3. Carpenter: CarTech® Hiperco® 50A Alloy (2017).

  4. R.S. Sundar, S.C. Deevi, and B.V. Reddy: High strength FeCo–V intermetallic alloy: Electrical and magnetic properties. J. Mater. Res. 20, 1515 (2005).

    CAS  Google Scholar 

  5. M.L. Storch, A.D. Rollett, and M.E. McHenry: The effect of mechanical working on the in-plane magnetic properties of Hiperco 50. J. Appl. Phys. 85, 6040 (1999).

    CAS  Google Scholar 

  6. R.Z. Valiev, I. Sabirov, A.P. Zhilyaev, and T.G. Langdon: Bulk nanostructured metals for innovative applications. JOM 64, 1134 (2012).

    CAS  Google Scholar 

  7. V.M. Segal: Materials processing by simple shear. Mater. Sci. Eng., A 197, 157 (1995).

    Google Scholar 

  8. V.M. Segal: Engineering and commercialization of equal channel angular extrusion (ECAE). Mater. Sci. Eng., A 386, 269 (2004).

    Google Scholar 

  9. R.Z. Valiev and T.G. Langdon: Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater. Sci. 51, 881 (2006).

    CAS  Google Scholar 

  10. B. Cullity and C. Graham: Introduction to magnetic materials, 2nd Ed. (2009); pp. 201–202.

  11. H.J. Bunge: Texture and magnetic properties. Textures Microstruct. 11, 75 (1989).

    Google Scholar 

  12. F. Pfeifer and C. Radeloff: Session 5: Ni–Fe and Co–Fe alloys—Some physical and metallurgical aspects. J. Magn. Magn. Mater. 19, 190 (1980).

    CAS  Google Scholar 

  13. W.B. Hutchinson and J.G. Swift: Anisotropy in some soft magnetic materials. Texture 1, 117 (1972).

    Google Scholar 

  14. A.D. Rollett, M.L. Storch, E.J. Hilinski, and S.R. Goodman: Approach to saturation in textured soft magnetic materials. Metall. Mater. Trans. A 32, 2595 (2001).

    Google Scholar 

  15. A.B. Kustas, D. Sagapuram, K.P. Trumble, and S. Chandrasekar: Texture development in high-silicon iron sheet produced by simple shear deformation. Metall. Mater. Trans. A 47, 3095 (2016).

    CAS  Google Scholar 

  16. A.B. Kustas, S. Chandrasekar, and K.P. Trumble: Magnetic properties characterization of shear-textured 4 wt% Si electrical steel sheet. J. Mater. Res. 31, 3930 (2016).

    CAS  Google Scholar 

  17. N.P. Goss: New development in electrical strip steels characterized by fine grain structure approaching the properties of a single crystal. Trans. ASM 23, 511 (1935).

    CAS  Google Scholar 

  18. S. Mishra, C. Därmann, and K. Lücke: On the development of the goss texture in iron–3% silicon. Acta Metall. 32, 2185 (1984).

    CAS  Google Scholar 

  19. R.C. Hall: Magnetic anisotropy and magnetostriction of ordered and disordered cobalt–iron alloys. J. Appl. Phys. 157, 110 (1960).

    Google Scholar 

  20. T. Niendorf, D. Canadinc, H.J. Maier, and I. Karaman: The role of heat treatment on the cyclic stress-strain response of ultrafine-grained interstitial-free steel. Int. J. Fatig. 30, 426 (2008).

    CAS  Google Scholar 

  21. G.G. Yapici, I.J. Beyerlein, I. Karaman, and C.N. Tomé: Tension-compression asymmetry in severely deformed pure copper. Acta Mater. 55, 4603 (2007).

    CAS  Google Scholar 

  22. I.J. Beyerlein and L.S. Tóth: Texture evolution in equal-channel angular extrusion. Prog. Mater. Sci. 54, 427 (2009).

    CAS  Google Scholar 

  23. M. Haouaoui, I. Karaman, and H.J. Maier: Flow stress anisotropy and Bauschinger effect in ultrafine grained copper. Acta Mater. 54, 5477 (2006).

    CAS  Google Scholar 

  24. R.E. Barber, T. Dudo, P.B. Yasskin, and K.T. Hartwig: Product yield for ECAE processing. Scr. Mater. 51, 373 (2004).

    CAS  Google Scholar 

  25. V. Segal, R. Goforth, and K.T. Hartwig: Apparatus and method for deformation processing of metals, ceramics, plastics and other materials. U.S. Patent No. 5,400,633, 1995.

  26. D.W. Clegg and R.A. Buckley: The disorder → order transformation in iron–cobalt-based alloys. Met. Sci. 7, 48 (1973).

    CAS  Google Scholar 

  27. ASTM A773/774M-14: Magntic propertics. In Annual Book of ASTM Standards, Vol. 3 (2014); pp. 1–12.

    Google Scholar 

  28. A. Belyakov, Y. Kimura, and K. Tsuzaki: Microstructure evolution in dual-phase stainless steel during severe deformation. Acta Mater. 54, 2521 (2006).

    CAS  Google Scholar 

  29. A. Belyakov, K. Tsuzaki, Y. Kimura, and Y. Mishima: Annealing behavior of a ferritic stainless steel subjected to large-strain cold working. J. Mater. Res. 22, 3042 (2007).

    CAS  Google Scholar 

  30. N.P. Gurao, P. Kumar, A. Sarkar, H.G. Brokmeier, and S. Suwas: Simulation of deformation texture evolution during multi axial forging of interstitial free steel. J. Mater. Eng. Perform. 22, 1004 (2013).

    CAS  Google Scholar 

  31. A.B. Kustas, D. Sagapuram, S. Chandrasekar, and K.P. Trumble: Deformation and recrystallization texture development in Fe–4% Si subjected to large shear deformation. IOP Conf. Ser. Mater. Sci. Eng. 82, 12054 (2015).

    Google Scholar 

  32. S. Li, I.J. Beyerlein, and M.A.M. Bourke: Texture formation during equal channel angular extrusion of fcc and bcc materials: Comparison with simple shear. Mater. Sci. Eng., A 394, 66 (2005).

    Google Scholar 

  33. S. Li, A.A. Gazder, I.J. Beyerlein, E.V. Pereloma, and C.H.J. Davies: Effect of processing route on microstructure and texture development in equal channel angular extrusion of interstitial-free steel. Acta Mater. 54, 1087 (2006).

    CAS  Google Scholar 

  34. S. Li, A.A. Gazder, I.J. Beyerlein, C.H.J. Davies, and E.V. Pereloma: Microstructure and texture evolution during equal channel angular extrusion of interstitial-free steel: Effects of die angle and processing route. Acta Mater. 55, 1017 (2007).

    CAS  Google Scholar 

  35. H. Jazaeri and F.J. Humphreys: The transition from discontinuous to continuous recrystallization in some aluminium alloys II. Acta Mater. 52, 3251 (2004).

    CAS  Google Scholar 

  36. H. Jazaeri and F.J. Humphreys: The transition from discontinuous to continuous recrystallization in some aluminium alloys. Acta Mater. 52, 3239 (2004).

    CAS  Google Scholar 

  37. D.I. Bardos: Mean magnetic moments in bcc Fe–Co alloys. J. Appl. Phys. 40, 1371 (1969).

    CAS  Google Scholar 

  38. G. Herzer: Grain size dependence of coercivity and permeability. IEEE Trans. Magn. 26, 1397 (1990).

    CAS  Google Scholar 

  39. R. Kaibyshev, K. Shipilova, F. Musin, and Y. Motohashi: Continuous dynamic recrystallization in an Al–Li–Mg–Sc alloy during equal-channel angular extrusion. Mater. Sci. Eng., A 396, 341 (2005).

    Google Scholar 

  40. A. Belyakov, T. Sakai, H. Miura, R. Kaibyshev, and K. Tsuzaki: Continuous recrystallization in austenitic stainless steel after large strain deformation. Acta Mater. 50, 1547 (2002).

    CAS  Google Scholar 

  41. T. Niendorf, D. Canadinc, H.J. Maier, I. Karaman, and G.G. Yapici: Microstructure-mechanical property relationships in ultrafine-grained NbZr. Acta Mater. 55, 6596 (2007).

    CAS  Google Scholar 

  42. G. Purcek, O. Saray, I. Karaman, and H.J. Maier: High strength and high ductility of ultrafine-grained, interstitial-free steel produced by ECAE and annealing. Metall. Mater. Trans. A 43, 1884 (2012).

    CAS  Google Scholar 

  43. I.J. Beyerlein and S.L. Toth: Texture evolution in equal-channel angular extrusion. Prog. Mater. Sci. 54, 427–510 (2009).

    CAS  Google Scholar 

  44. M.J. Marcinkowski and R.M. Polaik: A study of the magnetic domain configurations in Fe–Co solid solutions. Acta Metall. 12, 179 (1964).

    CAS  Google Scholar 

  45. R.C. Hall: Single crystal anisotropy and magnetostriction constants of several ferromagnetic materials including alloys of NiFe, SiFe, AlFe, CoNi, and CoFe. J. Appl. Phys. 30, 816 (1959).

    CAS  Google Scholar 

  46. A.B. Kustas, D.F. Susan, K.L. Johnson, S.R. Whetten, M.A. Rodriguez, D.J. Dagel, J.R. Michael, D.M. Keicher, and N. Argibay: Characterization of the Fe–Co–1.5V soft ferromagnetic alloy processed by laser engineered net shaping (LENS). Addit. Manuf. 21, 41–52 (2018).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to thank M. Reece, A.C. Kilgo, and B.B. McKenzie for materials characterization. Dr. R. Kellogg provided insightful discussion and review of this work. Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525. The FE-SEM acquisition was supported in part by the National Science Foundation under Grant No. DBI-0116835.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew B. Kustas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kustas, A.B., Michael, J.R., Susan, D.F. et al. Equal channel angular extrusion for bulk processing of Fe–Co–2V soft magnetic alloys, part II: Texture analysis and magnetic properties. Journal of Materials Research 33, 2176–2188 (2018). https://doi.org/10.1557/jmr.2018.150

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.150

Navigation