Abstract
Integration of the III–V material systems on Si is an enabling technology for achieving high efficiency heterojunction Si-based photovoltaic devices. Gallium phosphide (GaP) offers numerous potential electrical, optical, and material advantages over amorphous silicon (a-Si) for the realization of several heterojunction solar cell designs. In this paper, details are given for the growth, fabrication, and characterization of different n-GaP/n-Si heterojunction solar cells to explore the effect of GaP as a carrier-selective contact. The cell performance is promising with high Si bulk lifetime (∼2.2 ms at the injection level of 1015 cm−3) and an open-circuit voltage of 618 mV and an efficiency of 13.1% in this new solar cell design. In addition to GaP as an electron-selective contact, MoOx was successfully implemented as a hole-selective contact in the n-GaP/n-Si heterojunction solar cell, increasing efficiency to 14.1% by improving the short wavelength response. The Si bulk lifetime is maintained during growth of GaP on Si by two different approaches and their effects on GaP/Si solar cell performance are also presented.
Similar content being viewed by others
References
M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, and A.W.Y. Ho-Baillie: Solar cell efficiency tables (version 49). Prog. Photovoltaics Res. Appl. 25, 3 (2017).
U. Wurfel, A. Cuevas, and P. Wurfel: Charge carrier separation in solar cells. IEEE J. Photovolt. 5, 461 (2015).
K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).
I. Sakata and H. Kawanami: Band discontinuities in gallium phosphide/crystalline silicon heterojunctions studied by internal photoemission. Appl. Phys. Express 1, 91201 (2008).
S. Limpert, K. Ghosh, H. Wagner, S. Bowden, C. Honsberg, S. Goodnick, S. Bremner, A. Ho-Baillie, and M. Green: Results from coupled optical and electrical sentaurus TCAD models of a gallium phosphide on silicon electron carrier selective contact solar cell. In 2014 IEEE 40th Photovoltaic Specialist Conference (IEEE, Denver, Colorado 2014); p. 836.
M. Feifel, T. Rachow, J. Benick, J. Ohlmann, S. Janz, M. Hermle, F. Dimroth, and D. Lackner: Gallium phosphide window layer for silicon solar cells. IEEE J. Photovolt. 6, 384 (2016).
T.J. Grassman, J.A. Carlin, B. Galiana, F. Yang, M.J. Mills, and S.A. Ringel: MOCVD-grown GaP/Si subcells for integrated III–V/Si multijunction photovoltaics. IEEE J. Photovolt. 4, 972 (2014).
M. Feifel, J. Ohlmann, J. Benick, T. Rachow, S. Janz, M. Hermle, F. Dimroth, J. Belz, A. Beyer, K. Volz, and D. Lackner: MOVPE grown gallium phosphide–silicon heterojunction solar cells. IEEE J. Photovolt. 7, 502 (2017).
E.E. Beck, A.E. Blakeslee, and T.A. Gessert: Application of GaP/Si heteroepitaxy to cascade solar cells. Sol. Cell. 24, 205 (1988).
H. Wagner, T. Ohrdes, A. Dastgheib-Shirazi, B. Puthen-Veettil, D. König, and P.P. Altermatt: A numerical simulation study of gallium–phosphide/silicon heterojunction passivated emitter and rear solar cells. J. Appl. Phys. 115, 44508 (2014).
C. Zhang, N.N. Faleev, L. Ding, M. Boccard, M. Bertoni, Z. Holman, R.R. King, and C.B. Honsberg: Hetero-emitter GaP/Si solar cells with high Si bulk lifetime. In 2016 IEEE 43rd Photovoltaic Specialists Conference (IEEE, Portland, Oregon, 2016); pp. 1950–1953.
M.A. Green: The passivated emitter and rear cell (PERC): From conception to mass production. Sol. Energy Mater. Sol. Cells 143, 190 (2015).
E. García-Tabarés, J.A. Carlin, T.J. Grassman, D. Martín, I. Rey-Stolle, and S.A. Ringel: Evolution of silicon bulk lifetime during III–V-on-Si multijunction solar cell epitaxial growth. Prog. Photovoltaics Res. Appl. 24, 634 (2016).
R. Varache, M. Darnon, M. Descazeaux, M. Martin, T. Baron, and D. Muñoz: Evolution of bulk c-Si properties during the processing of GaP/c-Si heterojunction cell. Energy Procedia 77, 493 (2015).
E.L. Warren, A.E. Kibbler, R.M. France, A.G. Norman, J.M. Olson, and W.E. McMahon: Investigation of GaP/Si Heteroepitaxy on MOCVD Prepared Si(100) Surfaces. In 2015 IEEE 42nd Photovoltaic Specialis Conference (IEEE, New Orleans, 2015); pp. 1–4.
L. Ding, C. Zhang, T.U. Nærland, N. Faleev, C. Honsberg, and M.I. Bertoni: Silicon minority-carrier lifetime degradation during molecular beam heteroepitaxial III–V material growth. Energy Procedia 92, 617 (2016).
L. Ding, C. Zhang, T.U. Norland, N. Faleev, C. Honsberg, and M. Bertoni: On the source of silicon minority-carrier lifetime degradation during molecular beam heteroepitaxial growth of III-V materials. In 2016 IEEE 43rd Photovoltaic Specialists Conference (IEEE, Portland, Oregon, 2016); pp. 2048–2051.
C. Zhang, Y. Kim, N.N. Faleev, and C.B. Honsberg: Improvement of GaP crystal quality and silicon bulk lifetime in GaP/Si heteroepitaxy. J. Cryst. Growth 475, 83 (2017).
J. Ohlmann, M. Feifel, T. Rachow, J. Benick, S. Janz, F. Dimroth, and D. Lackner: Influence of metal–organic vapor phase epitaxy reactor environment on the silicon bulk lifetime. IEEE J. Photovolt. 6, 1668 (2016).
J. Bevk, J.P. Mannaerts, L.C. Feldman, B.A. Davidson, and A. Ourmazd: Ge–Si layered structures: Artificial crystals and complex cell ordered superlattices. Appl. Phys. Lett. 49, 286 (1986).
Y. Takagi, H. Yonezu, K. Samonji, T. Tsuji, and N. Ohshima: Generation and suppression process of crystalline defects in GaP layers grown on misoriented Si(100) substrates. J. Cryst. Growth 187, 42 (1998).
A. Ishizaka and Y. Shiraki: Low temperature surface cleaning of silicon and its application to silicon MBE. J. Electrochem. Soc. 133, 666 (1986).
C. Zhang, L. Ding, M. Boccard, T.U. Nærland, N. Faleev, S. Bowden, M. Bertoni, and C. Honsberg: Practical Approaches to Mitigate Minority-Carrier Lifetime Degradation in Si Wafers (submitted).
N. Khedher, M. Hajji, M. Hassen, A. Ben Jaballah, B. Ouertani, H. Ezzaouia, B. Bessais, A. Selmi, and R. Bennaceur: Gettering impurities from crystalline silicon by phosphorus diffusion using a porous silicon layer. Sol. Energy Mater. Sol. Cells 87, 605 (2005).
S.Y. Herasimenka, W.J. Dauksher, M. Boccard, and S. Bowden: ITO/SiOx:H stacks for silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 158, 98 (2016).
R.A. Street, D.K. Biegelsen, and J.C. Knights: Defect states in doped and compensated a-Si:H. Phys. Rev. B 24, 969 (1981).
M. Bivour, J. Temmler, H. Steinkemper, and M. Hermle: Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells. Sol. Energy Mater. Sol. Cells 142, 34 (2015).
C. Battaglia, S.M. de Nicolás, S. De Wolf, X. Yin, M. Zheng, C. Ballif, and A. Javey: Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl. Phys. Lett. 104, 113902 (2014).
K.R. McIntosh and S.C. Baker-Finch: OPAL 2: Rapid optical simulation of silicon solar cells. In 2012 38th IEEE Photovoltaic Specialists Conference (IEEE, Austin, Texas, 2012); pp. 000265–000271.
Z.C. Holman, A. Descoeudres, L. Barraud, F.Z. Fernandez, J.P. Seif, S. De Wolf, and C. Ballif: Current losses at the front of silicon heterojunction solar cells. IEEE J. Photovolt. 2, 7 (2012).
C. Battaglia, X. Yin, M. Zheng, I.D. Sharp, T. Chen, S. McDonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, R.M. Wallace, and A. Javey: Hole selective MoOx contact for silicon solar cells. Nano Lett. 14, 967 (2014).
ACKNOWLEDGMENTS
The authors would like to thank L. Ding and M. Boccard for their contributions in processing and testing of the solar cells in this study. The authors acknowledge funding from the U.S. Department of Energy under contract DE-EE0006335 and the Engineering Research Center Program of the National Science Foundation and the Office of Energy Efficiency and Renewable Energy of the Department of Energy under NSF Cooperative Agreement No. EEC-1041895.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Zhang, C., Vadiee, E., King, R.R. et al. Carrier-selective contact GaP/Si solar cells grown by molecular beam epitaxy. Journal of Materials Research 33, 414–423 (2018). https://doi.org/10.1557/jmr.2018.14
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2018.14