Skip to main content

Advertisement

Log in

Carrier-selective contact GaP/Si solar cells grown by molecular beam epitaxy

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Integration of the III–V material systems on Si is an enabling technology for achieving high efficiency heterojunction Si-based photovoltaic devices. Gallium phosphide (GaP) offers numerous potential electrical, optical, and material advantages over amorphous silicon (a-Si) for the realization of several heterojunction solar cell designs. In this paper, details are given for the growth, fabrication, and characterization of different n-GaP/n-Si heterojunction solar cells to explore the effect of GaP as a carrier-selective contact. The cell performance is promising with high Si bulk lifetime (∼2.2 ms at the injection level of 1015 cm−3) and an open-circuit voltage of 618 mV and an efficiency of 13.1% in this new solar cell design. In addition to GaP as an electron-selective contact, MoOx was successfully implemented as a hole-selective contact in the n-GaP/n-Si heterojunction solar cell, increasing efficiency to 14.1% by improving the short wavelength response. The Si bulk lifetime is maintained during growth of GaP on Si by two different approaches and their effects on GaP/Si solar cell performance are also presented.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, D.H. Levi, and A.W.Y. Ho-Baillie: Solar cell efficiency tables (version 49). Prog. Photovoltaics Res. Appl. 25, 3 (2017).

    Article  Google Scholar 

  2. U. Wurfel, A. Cuevas, and P. Wurfel: Charge carrier separation in solar cells. IEEE J. Photovolt. 5, 461 (2015).

    Article  Google Scholar 

  3. K. Yoshikawa, H. Kawasaki, W. Yoshida, T. Irie, K. Konishi, K. Nakano, T. Uto, D. Adachi, M. Kanematsu, H. Uzu, and K. Yamamoto: Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26%. Nat. Energy 2, 17032 (2017).

    Article  CAS  Google Scholar 

  4. I. Sakata and H. Kawanami: Band discontinuities in gallium phosphide/crystalline silicon heterojunctions studied by internal photoemission. Appl. Phys. Express 1, 91201 (2008).

    Article  Google Scholar 

  5. S. Limpert, K. Ghosh, H. Wagner, S. Bowden, C. Honsberg, S. Goodnick, S. Bremner, A. Ho-Baillie, and M. Green: Results from coupled optical and electrical sentaurus TCAD models of a gallium phosphide on silicon electron carrier selective contact solar cell. In 2014 IEEE 40th Photovoltaic Specialist Conference (IEEE, Denver, Colorado 2014); p. 836.

    Chapter  Google Scholar 

  6. M. Feifel, T. Rachow, J. Benick, J. Ohlmann, S. Janz, M. Hermle, F. Dimroth, and D. Lackner: Gallium phosphide window layer for silicon solar cells. IEEE J. Photovolt. 6, 384 (2016).

    Article  Google Scholar 

  7. T.J. Grassman, J.A. Carlin, B. Galiana, F. Yang, M.J. Mills, and S.A. Ringel: MOCVD-grown GaP/Si subcells for integrated III–V/Si multijunction photovoltaics. IEEE J. Photovolt. 4, 972 (2014).

    Article  Google Scholar 

  8. M. Feifel, J. Ohlmann, J. Benick, T. Rachow, S. Janz, M. Hermle, F. Dimroth, J. Belz, A. Beyer, K. Volz, and D. Lackner: MOVPE grown gallium phosphide–silicon heterojunction solar cells. IEEE J. Photovolt. 7, 502 (2017).

    Article  Google Scholar 

  9. E.E. Beck, A.E. Blakeslee, and T.A. Gessert: Application of GaP/Si heteroepitaxy to cascade solar cells. Sol. Cell. 24, 205 (1988).

    Article  CAS  Google Scholar 

  10. H. Wagner, T. Ohrdes, A. Dastgheib-Shirazi, B. Puthen-Veettil, D. König, and P.P. Altermatt: A numerical simulation study of gallium–phosphide/silicon heterojunction passivated emitter and rear solar cells. J. Appl. Phys. 115, 44508 (2014).

    Article  Google Scholar 

  11. C. Zhang, N.N. Faleev, L. Ding, M. Boccard, M. Bertoni, Z. Holman, R.R. King, and C.B. Honsberg: Hetero-emitter GaP/Si solar cells with high Si bulk lifetime. In 2016 IEEE 43rd Photovoltaic Specialists Conference (IEEE, Portland, Oregon, 2016); pp. 1950–1953.

    Chapter  Google Scholar 

  12. M.A. Green: The passivated emitter and rear cell (PERC): From conception to mass production. Sol. Energy Mater. Sol. Cells 143, 190 (2015).

    Article  CAS  Google Scholar 

  13. E. García-Tabarés, J.A. Carlin, T.J. Grassman, D. Martín, I. Rey-Stolle, and S.A. Ringel: Evolution of silicon bulk lifetime during III–V-on-Si multijunction solar cell epitaxial growth. Prog. Photovoltaics Res. Appl. 24, 634 (2016).

    Article  Google Scholar 

  14. R. Varache, M. Darnon, M. Descazeaux, M. Martin, T. Baron, and D. Muñoz: Evolution of bulk c-Si properties during the processing of GaP/c-Si heterojunction cell. Energy Procedia 77, 493 (2015).

    Article  CAS  Google Scholar 

  15. E.L. Warren, A.E. Kibbler, R.M. France, A.G. Norman, J.M. Olson, and W.E. McMahon: Investigation of GaP/Si Heteroepitaxy on MOCVD Prepared Si(100) Surfaces. In 2015 IEEE 42nd Photovoltaic Specialis Conference (IEEE, New Orleans, 2015); pp. 1–4.

    Google Scholar 

  16. L. Ding, C. Zhang, T.U. Nærland, N. Faleev, C. Honsberg, and M.I. Bertoni: Silicon minority-carrier lifetime degradation during molecular beam heteroepitaxial III–V material growth. Energy Procedia 92, 617 (2016).

    Article  CAS  Google Scholar 

  17. L. Ding, C. Zhang, T.U. Norland, N. Faleev, C. Honsberg, and M. Bertoni: On the source of silicon minority-carrier lifetime degradation during molecular beam heteroepitaxial growth of III-V materials. In 2016 IEEE 43rd Photovoltaic Specialists Conference (IEEE, Portland, Oregon, 2016); pp. 2048–2051.

    Chapter  Google Scholar 

  18. C. Zhang, Y. Kim, N.N. Faleev, and C.B. Honsberg: Improvement of GaP crystal quality and silicon bulk lifetime in GaP/Si heteroepitaxy. J. Cryst. Growth 475, 83 (2017).

    Article  CAS  Google Scholar 

  19. J. Ohlmann, M. Feifel, T. Rachow, J. Benick, S. Janz, F. Dimroth, and D. Lackner: Influence of metal–organic vapor phase epitaxy reactor environment on the silicon bulk lifetime. IEEE J. Photovolt. 6, 1668 (2016).

    Article  Google Scholar 

  20. J. Bevk, J.P. Mannaerts, L.C. Feldman, B.A. Davidson, and A. Ourmazd: Ge–Si layered structures: Artificial crystals and complex cell ordered superlattices. Appl. Phys. Lett. 49, 286 (1986).

    Article  CAS  Google Scholar 

  21. Y. Takagi, H. Yonezu, K. Samonji, T. Tsuji, and N. Ohshima: Generation and suppression process of crystalline defects in GaP layers grown on misoriented Si(100) substrates. J. Cryst. Growth 187, 42 (1998).

    Article  CAS  Google Scholar 

  22. A. Ishizaka and Y. Shiraki: Low temperature surface cleaning of silicon and its application to silicon MBE. J. Electrochem. Soc. 133, 666 (1986).

    Article  CAS  Google Scholar 

  23. C. Zhang, L. Ding, M. Boccard, T.U. Nærland, N. Faleev, S. Bowden, M. Bertoni, and C. Honsberg: Practical Approaches to Mitigate Minority-Carrier Lifetime Degradation in Si Wafers (submitted).

  24. N. Khedher, M. Hajji, M. Hassen, A. Ben Jaballah, B. Ouertani, H. Ezzaouia, B. Bessais, A. Selmi, and R. Bennaceur: Gettering impurities from crystalline silicon by phosphorus diffusion using a porous silicon layer. Sol. Energy Mater. Sol. Cells 87, 605 (2005).

    Article  CAS  Google Scholar 

  25. S.Y. Herasimenka, W.J. Dauksher, M. Boccard, and S. Bowden: ITO/SiOx:H stacks for silicon heterojunction solar cells. Sol. Energy Mater. Sol. Cells 158, 98 (2016).

    Article  CAS  Google Scholar 

  26. R.A. Street, D.K. Biegelsen, and J.C. Knights: Defect states in doped and compensated a-Si:H. Phys. Rev. B 24, 969 (1981).

    Article  CAS  Google Scholar 

  27. M. Bivour, J. Temmler, H. Steinkemper, and M. Hermle: Molybdenum and tungsten oxide: High work function wide band gap contact materials for hole selective contacts of silicon solar cells. Sol. Energy Mater. Sol. Cells 142, 34 (2015).

    Article  CAS  Google Scholar 

  28. C. Battaglia, S.M. de Nicolás, S. De Wolf, X. Yin, M. Zheng, C. Ballif, and A. Javey: Silicon heterojunction solar cell with passivated hole selective MoOx contact. Appl. Phys. Lett. 104, 113902 (2014).

    Article  Google Scholar 

  29. K.R. McIntosh and S.C. Baker-Finch: OPAL 2: Rapid optical simulation of silicon solar cells. In 2012 38th IEEE Photovoltaic Specialists Conference (IEEE, Austin, Texas, 2012); pp. 000265–000271.

    Chapter  Google Scholar 

  30. Z.C. Holman, A. Descoeudres, L. Barraud, F.Z. Fernandez, J.P. Seif, S. De Wolf, and C. Ballif: Current losses at the front of silicon heterojunction solar cells. IEEE J. Photovolt. 2, 7 (2012).

    Article  Google Scholar 

  31. C. Battaglia, X. Yin, M. Zheng, I.D. Sharp, T. Chen, S. McDonnell, A. Azcatl, C. Carraro, B. Ma, R. Maboudian, R.M. Wallace, and A. Javey: Hole selective MoOx contact for silicon solar cells. Nano Lett. 14, 967 (2014).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank L. Ding and M. Boccard for their contributions in processing and testing of the solar cells in this study. The authors acknowledge funding from the U.S. Department of Energy under contract DE-EE0006335 and the Engineering Research Center Program of the National Science Foundation and the Office of Energy Efficiency and Renewable Energy of the Department of Energy under NSF Cooperative Agreement No. EEC-1041895.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chaomin Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Vadiee, E., King, R.R. et al. Carrier-selective contact GaP/Si solar cells grown by molecular beam epitaxy. Journal of Materials Research 33, 414–423 (2018). https://doi.org/10.1557/jmr.2018.14

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.14

Navigation