Skip to main content
Log in

Submicro-sized Si-Ge solid solutions with high capacity and long cyclability for lithium-ion batteries

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Mastery of strengthening strategies to achieve high-capacity anodes for lithium-ion batteries can shed light on understanding the nature of diffusion-induced stress and offer an approach to use submicro-sized materials with an ultrahigh capacity for large-scale batteries. Here, we report solute strengthening in a series of silicon (Si)—germanium (Ge) alloys. When the larger solute atom (Ge) is added to the solvent atoms (Si), a compressive stress is generated in the vicinity of Ge atoms. This local stress field interacts with resident dislocations and subsequently impedes their motion to increase the yield stress in the alloys. The addition of Ge into Si substantially improves the capacity retention, particularly in Si0.50Ge0.50, aligning with literature reports that the Si/Ge alloy showed a maximum yield stress in Si0.50Ge0.50. In situ X-ray diffraction studies on the Si0.50Ge0.50 electrode show that the phase change undergoes three subsequent steps during the lithiation process: removal of surface oxide layer, formation of cluster-size Lix(Si,Ge), and formation of crystalline Li15(Si,Ge)4. Furthermore, the lithiation process starts from higher index facets, i.e., (220) and (311), then through the low index facet (111), suggesting the orientation-dependence of the lithiation process in the Si0.50Ge0.50 electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. C.K. Chan, H. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, and Y. Cui: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2008).

    Article  CAS  Google Scholar 

  2. A. Dębski, W. Zakulski, Ł. Major, A. Góral, and W. Gąsior: Enthalpy of formation of the Li22Si5 intermetallic compound. Thermochim. Acta 551, 53 (2013).

    Article  Google Scholar 

  3. T.D. Hatchard and J.R. Dahn: In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838 (2004).

    Article  CAS  Google Scholar 

  4. J.P. Dismukes, L. Ekstrom, and R.J. Paff: Lattice parameter and density in germanium–silicon alloys1. J. Phys. Chem. 68, 3021 (1964).

    Article  CAS  Google Scholar 

  5. C. Wang, H. Wu, Z. Chen, M.T. McDowell, Y. Cui, and Z. Bao: Self-healing chemistry enables the stable operation of silicon microparticle anodes for high-energy lithium-ion batteries. Nat. Chem. 5, 1042 (2013).

    Article  CAS  Google Scholar 

  6. W. Liang, H. Yang, F. Fan, Y. Liu, X.H. Liu, J.Y. Huang, T. Zhu, and S. Zhang: Tough germanium nanoparticles under electrochemical cycling. ACS Nano 7, 3427 (2013).

    Article  CAS  Google Scholar 

  7. K. Zhao, M. Pharr, J.J. Vlassak, and Z. Suo: Inelastic hosts as electrodes for high-capacity lithium-ion batteries. J. Appl. Phys. 109, 016110 (2011).

    Article  Google Scholar 

  8. S. Murugesan, J.T. Harris, B.A. Korgel, and K.J. Stevenson: Copper-coated amorphous silicon particles as an anode material for lithium-ion batteries. Chem. Mater. 24, 1306 (2012).

    Article  CAS  Google Scholar 

  9. P.R. Abel, A.M. Chockla, Y-M. Lin, V.C. Holmberg, J.T. Harris, B.A. Korgel, A. Heller, and C.B. Mullins: Nanostructured Si1−xGex for tunable thin film lithium-ion battery anodes. ACS Nano 7, 2249 (2013).

    Article  CAS  Google Scholar 

  10. D. Munao, M. Valvo, J. van Erven, E.M. Kelder, J. Hassoun, and S. Panero: Silicon-based nanocomposite for advanced thin film anodes in lithium-ion batteries. J. Mater. Chem. 22, 1556 (2012).

    Article  CAS  Google Scholar 

  11. J. Guo, A. Sun, X. Chen, C. Wang, and A. Manivannan: Cyclability study of silicon–carbon composite anodes for lithium-ion batteries using electrochemical impedance spectroscopy. Electrochim. Acta 56, 3981 (2011).

    Article  CAS  Google Scholar 

  12. D. Yang, X. Yu, X. Li, P. Wang, and L. Wang: Germanium-doped crystal silicon for solar cells. In 2010 10th IEEE International Conference on Solid-State and Integrated Circuit Technology (Shanghai, 2010); p. 1994.

    Chapter  Google Scholar 

  13. P. Wang, X. Yu, Z. Li, and D. Yang: Improved fracture strength of multicrystalline silicon by germanium doping. J. Cryst. Growth 318, 230 (2011).

    Article  CAS  Google Scholar 

  14. T. Song, H. Cheng, H. Choi, J-H. Lee, H. Han, D.H. Lee, D.S. Yoo, M-S. Kwon, J-M. Choi, S.G. Doo, H. Chang, J. Xiao, Y. Huang, W.I. Park, Y-C. Chung, H. Kim, J.A. Rogers, and U. Paik: Si/Ge double-layered nanotube array as a lithium ion battery anode. ACS Nano 6, 303 (2011).

    Article  Google Scholar 

  15. D. Duveau, B. Fraisse, F. Cunin, and L. Monconduit: Synergistic effects of Ge and Si on the performances and mechanism of the GexSi1−x electrodes for Li ion batteries. Chem. Mater. 27, 3226 (2015).

    Article  CAS  Google Scholar 

  16. X. Wang, A. Yang, and S. Xia: Fracture toughness characterization of lithiated germanium as an anode material for lithium-ion batteries. J. Electrochem. Soc. 163, A90 (2016).

    Article  CAS  Google Scholar 

  17. X. Gao, W. Luo, C. Zhong, D. Wexler, S-L. Chou, H-K. Liu, Z. Shi, G. Chen, K. Ozawa, and J-Z. Wang: Novel germanium/polypyrrole composite for high power lithium-ion batteries. Sci. Rep. 4, 6095 (2014).

    Article  CAS  Google Scholar 

  18. J. Graetz, C.C. Ahn, R. Yazami, and B. Fultz: Nanocrystalline and thin film germanium electrodes with high lithium capacity and high rate capabilities. J. Electrochem. Soc. 151, A698 (2004).

    Article  CAS  Google Scholar 

  19. R.A. Huggins and W.D. Nix: Decrepitation model for capacity loss during cycling of alloys in rechargeable electrochemical systems. Ionics 6, 57 (2000).

    Article  CAS  Google Scholar 

  20. I. Chasiotis, S.W. Cho, and K. Jonnalagadda: Fracture toughness and subcritical crack growth in polycrystalline silicon. J. Appl. Mech. 73, 714 (2005).

    Article  Google Scholar 

  21. K. Zhao: Mechanics of Electrodes in Lithium-Ion Batteries (Harvard University, Cambridge, MA, 2012).

    Google Scholar 

  22. X-K. Zhu and J.A. Joyce: Review of fracture toughness (G, K, J, CTOD, CTOA) testing and standardization. Eng. Fract. Mech. 85, 1 (2012).

    Article  Google Scholar 

  23. I. Yonenaga: Hardness, yield strength, and dislocation velocity in elemental and compound semiconductors. Mater. Trans. 46, 1979 (2005).

    Article  CAS  Google Scholar 

  24. I. Yonenaga: Growth and fundamental properties of SiGe bulk crystals. J. Cryst. Growth 275, 91 (2005).

    Article  CAS  Google Scholar 

  25. I. Yonenaga: Dislocation dynamics in SiGe alloys. J. Phys.: Conf. Ser. 471, 012002 (2013).

    Google Scholar 

  26. K. Mishra, J. Zheng, R. Patel, L. Estevez, H. Jia, L. Luo, P.Z. El-Khoury, X. Li, X-D. Zhou, and J-G. Zhang: High performance porous Si@C anodes synthesized by low temperature aluminothermic reaction. Electrochim. Acta 269, 509 (2018).

    Article  CAS  Google Scholar 

  27. F-S. Ke, K. Mishra, L. Jamison, X-X. Peng, S-G. Ma, L. Huang, S-G. Sun, and X-D. Zhou: Tailoring nanostructures in micrometer size germanium particles to improve their performance as an anode for lithium ion batteries. Chem. Commun. 50, 3713 (2014).

    Article  CAS  Google Scholar 

  28. J.C. Aubry, T. Tyliszczak, A.P. Hitchcock, J.M. Baribeau, and T.E. Jackman: First-shell bond lengths in SixGe1−x crystalline alloys. Phys. Rev. B 59, 12872 (1999).

    Article  CAS  Google Scholar 

  29. J.L. Martins and A. Zunger: Stability of ordered bulk and epitaxial semiconductor alloys. Phys. Rev. Lett. 56, 1400 (1986).

    Article  CAS  Google Scholar 

  30. C. Tzoumanekas and P.C. Kelires: Theory of bond-length variations in relaxed, strained, and amorphous silicon–germanium alloys. Phys. Rev. B 66, 195209 (2002).

    Article  Google Scholar 

  31. M. Yu, C.S. Jayanthi, D.A. Drabold, and S.Y. Wu: Strain relaxation mechanisms and local structural changes in Si1−xGex alloys. Phys. Rev. B 64, 165205 (2001).

    Article  Google Scholar 

  32. J.J. Wortman and R.A. Evans: Young’s modulus, shear modulus, and Poisson’s ratio in silicon and germanium. J. Appl. Phys. 36, 153 (1965).

    Article  CAS  Google Scholar 

  33. K. Zhao, M. Pharr, J.J. Vlassak, and Z. Suo: Fracture of electrodes in lithium-ion batteries caused by fast charging. J. Appl. Phys. 108, 073517 (2010).

    Article  Google Scholar 

  34. J.N. Weker, N. Liu, S. Misra, J.C. Andrews, Y. Cui, and M.F. Toney: In situ nanotomography and operando transmission X-ray microscopy of micron-sized Ge particles. Energy Environ. Sci. 7, 2771 (2014).

    Article  CAS  Google Scholar 

  35. K.E. Silberstein, M.A. Lowe, B. Richards, J. Gao, T. Hanrath, and H.D. Abruña: Operando X-ray scattering and spectroscopic analysis of germanium nanowire anodes in lithium ion batteries. Langmuir 31, 2028 (2015).

    Article  CAS  Google Scholar 

  36. S. Misra, N. Liu, J. Nelson, S.S. Hong, Y. Cui, and M.F. Toney: In situ X-ray diffraction studies of (de)lithiation mechanism in silicon nanowire anodes. ACS Nano 6, 5465 (2012).

    Article  CAS  Google Scholar 

  37. X.H. Liu, S. Huang, S.T. Picraux, J. Li, T. Zhu, and J.Y. Huang: Reversible nanopore formation in Ge nanowires during lithiation–delithiation cycling: An in situ transmission electron microscopy study. Nano Lett. 11, 3991 (2011).

    Article  CAS  Google Scholar 

  38. L. Baggetto and P.H.L. Notten: Lithium-ion (de)insertion reaction of germanium thin-film electrodes: An electrochemical and in situ XRD study. J. Electrochem. Soc. 156, A169 (2009).

    Article  CAS  Google Scholar 

  39. M.K. Datta and P.N. Kumta: In situ electrochemical synthesis of lithiated silicon–carbon based composites anode materials for lithium ion batteries. J. Power Sources 194, 1043 (2009).

    Article  CAS  Google Scholar 

  40. J-G. Zhang, W. Wang, J. Xiao, W. Xu, G.L. Graff, G. Yang, D. Choi, D. Wang, X. Li, and J. Liu: Silicon-based anodes for Li-ion batteries. In Batteries for Sustainability: Selected Entries from the Encyclopedia of Sustainability Science and Technology, R.J. Brodd, ed. (Springer, New York, 2013); p. 471.

    Chapter  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was also partially supported by National Science Foundation under Grant No. CBET1408751. Part of the work was sponsored by National Nature Science Foundation of China (21403157) and Natural Science Foundation of Jiangsu Province of China (ZXG201446 and BK20140410) and the Fundamental Research Funds for the Central Universities (2042017kf0232). FSK acknowledges the New Faculty Startup Fund of Wuhan University, Large-scale Instrument and Equipment Sharing Foundation of Wuhan University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kuber Mishra, Xiao-Dong Zhou or Fu-Sheng Ke.

Supplementary Materials

43578_2018_33111553_MOESM1_ESM.docx

Supplementary Materials: Submicro-Sized Si-Ge Solid Solutions with High Capacity and Long Cyclability for Lithium Ion Batteries (approximately 3.66 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, K., Liu, XC., Geppert, M. et al. Submicro-sized Si-Ge solid solutions with high capacity and long cyclability for lithium-ion batteries. Journal of Materials Research 33, 1553–1564 (2018). https://doi.org/10.1557/jmr.2018.145

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.145

Navigation