Skip to main content
Log in

New insights into polymer solar cells stability: The crucial role of PCBM oxidation

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Fullerene derivatives have been ubiquitous as an electron-accepting material in organic photovoltaic solar cells (OSCs). We consider whether and why traces of PCBM oxidation products should be seen as electronic defects impairing the performance of OSCs. Thin PCBM deposits were first illuminated under ambient air for a few minutes, thus revealing the extraordinary easiness of oxidizing PCBM. The charge transfer in polymer:PCBMox bulk heterojunctions was then studied. As a result of a few minutes of PCBM photooxidation, the electron transfer from the polymer to two types of PCBMox species was shown to occur at the expense of the transfer to pristine PCBM. Such modifications to the molecular structure of PCBM and to the charge transfer at the nanoscale were finally correlated with a dramatic loss in the device’s photovoltaic performance at the macroscale. This study clearly indicates the need to integrate photooxidation-resistant electron-accepting materials into OSCs to extend their lifetime.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop: Solar cell efficiency tables (version 48): Solar cell efficiency tables (version 48). Prog. Photovoltaics Res. Appl. 24, 905–913 (2016).

    Article  Google Scholar 

  2. D. Baran, R.S. Ashraf, D.A. Hanifi, M. Abdelsamie, N. Gasparini, J.A. Röhr, S. Holliday, A. Wadsworth, S. Lockett, M. Neophytou, C.J.M. Emmott, J. Nelson, C.J. Brabec, A. Amassian, A. Salleo, T. Kirchartz, J.R. Durrant, and I. McCulloch: Reducing the efficiency–stability–cost gap of organic photovoltaics with highly efficient and stable small molecule acceptor ternary solar cells. Nat. Mater. 16, 363–369 (2017).

    Article  CAS  Google Scholar 

  3. P. Cheng and X. Zhan: Stability of organic solar cells: Challenges and strategies. Chem. Soc. Rev. 45, 2544–2582 (2016).

    Article  CAS  Google Scholar 

  4. N. Grossiord, J.M. Kroon, R. Andriessen, and P.W.M. Blom: Degradation mechanisms in organic photovoltaic devices. Org. Electron. 13, 432–456 (2012).

    Article  CAS  Google Scholar 

  5. A. Rivaton, A. Tournebize, J. Gaume, P-O. Bussière, J-L. Gardette, and S. Therias: Photostability of organic materials used in polymer solar cells. Polym. Int. 63, 1335–1345 (2014).

    Article  CAS  Google Scholar 

  6. J-L. Gardette, A. Colin, S. Trivis, S. German, and S. Therias: Impact of photooxidative degradation on the oxygen permeability of poly(ethyleneterephthalate). Polym. Degrad. Stab. 103, 35–41 (2014).

    Article  CAS  Google Scholar 

  7. H.S. Silva, J. Cresson, A. Rivaton, D. Bégué, and R.C. Hiorns: Correlating geometry of multidimensional carbon allotropes molecules and stability. Org. Electron. 26, 395–399 (2015).

    Article  CAS  Google Scholar 

  8. J.P. Bastos, E. Voroshazi, E. Fron, G. Brammertz, T. Vangerven, M. van der Auweraer, J. Poortmans, and D. Cheyns: Oxygen-induced degradation in C60-based organic solar cells: Relation between film properties and device performance. ACS Appl. Mater. Interfaces 8, 9798–9805 (2016).

    Article  CAS  Google Scholar 

  9. Y. Matsuo, A. Ozu, N. Obata, N. Fukuda, H. Tanaka, and E. Nakamura: Deterioration of bulk heterojunction organic photovoltaic devices by a minute amount of oxidized fullerene. Chem. Commun. 48, 3878–3880 (2012).

    Article  CAS  Google Scholar 

  10. A. Rivaton, M. Manceau, S. Chambon, J-L. Gardette, S. Guillerez, and N. Lemaître: Light-induced degradation of the active layer of polymer-based solar cells. Polym. Degrad. Stab. 95, 278–284 (2010).

    Article  CAS  Google Scholar 

  11. A. Tournebize, P-O. Bussière, A. Rivaton, J-L. Gardette, H. Medlej, R.C. Hiorns, C. Dagron-Lartigau, F.C. Krebs, and K. Norrman: New insights into the mechanisms of photodegradation/stabilization of P3HT:PCBM active layers using poly(3-hexyl-d13-thiophene). Chem. Mater. 25, 4522–4528 (2013).

    Article  CAS  Google Scholar 

  12. M. Manceau, A. Rivaton, and J.L. Gardette: Photochemical stability of materials for OPV. In Stability and Degradation of Organic and Polymer Solar Cells, F.C. Krebs, ed. (Wiley Interscience, Chichester, United Kingdom, 2012); pp. 71–108.

    Chapter  Google Scholar 

  13. S. Karuthedath, T. Sauermann, H.J. Egelhaaf, R. Wannemacher, C.J. Brabec, and L. Lüer: The effect of oxygen induced degradation on charge carrier dynamics in P3HT:PCBM and Si-PCPDTBT:PCBM thin films and solar cells. J. Mater. Chem. A 3, 3399–3408 (2015).

    Article  CAS  Google Scholar 

  14. A. Seemann, T. Sauermann, C. Lungenschmied, O. Armbruster, S. Bauer, H-J. Egelhaaf, and J. Hauch: Reversible and irreversible degradation of organic solar cell performance by oxygen. Sol. Energy 85, 1238–1249 (2011).

    Article  CAS  Google Scholar 

  15. D.K. Susarova, N.P. Piven, A.V. Akkuratov, L.A. Frolova, M.S. Polinskaya, S.A. Ponomarenko, S.D. Babenko, and P.A. Troshin: ESR spectroscopy as a powerful tool for probing the quality of conjugated polymers designed for photovoltaic applications. Chem. Commun. 51, 2239–2241 (2015).

    Article  CAS  Google Scholar 

  16. B. Pépin-Donat, C. Ottone, C. Lombard, A. Lefrançois, C. Morell, P. Reiss, and S. Sadki: Electron paramagnetic resonance tracing of electronic transfers in push–pull copolymers/PCBM or nanocrystal composites. J. Phys. Chem. B 118, 20647–20660 (2014).

    Google Scholar 

  17. A. Tournebize, A. Rivaton, J-L. Gardette, C. Lombard, B. Pépin-Donat, S. Beaupré, and M. Leclerc: How photoinduced crosslinking under operating conditions can reduce PCDTBT-based solar cell efficiency and then stabilize it. Adv. Energy Mater. 4, 1301530 (2014).

    Article  Google Scholar 

  18. J. Niklas and O.G. Poluektov: Organic photovoltaics: Charge transfer processes in OPV materials as revealed by EPR spectroscop. Adv. Energy Mater. 7, 1602226 (2017).

    Article  Google Scholar 

  19. M. Salvador, N. Gasparini, J.D. Perea, S.H. Paleti, A. Distler, L.N. Inasaridze, P.A. Troshin, L. Lüer, H.J. Egelhaaf, and C. Brabec: Suppressing photooxidation of conjugated polymers and their blends with fullerenes through nickel chelates. Energy Environ. Sci. 10, 2005–2016 (2017).

    Article  CAS  Google Scholar 

  20. M.T. Dang, L. Hirsch, and G. Wantz: P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 23, 3597–3602 (2011).

    Article  CAS  Google Scholar 

  21. F. Neese: The ORCA program system. Wiley Interdiscip. Rev.: Comput. Mol. Sci. 2, 73–78 (2012).

    CAS  Google Scholar 

  22. A.K. Dutta, F. Neese, and R. Izsak: Speeding up equation of motion coupled cluster theory with the chain of spheres approximation. J. Chem. Phys. 144, 034102 (2016).

    Article  Google Scholar 

  23. D. Ganyushin and F. Neese: A fully variational spin-orbit coupled complete active space selfconsistent field approach: Application to electron paramagnetic resonance g-tensors. J. Chem. Phys. 138, 104113 (2013).

    Article  Google Scholar 

  24. B. Sandhoefer and F. Neese: One-electron contributions to the g-tensor for second-order Douglas–Kroll–Hess theory. J. Chem. Phys. 137, 094102 (2012).

    Article  CAS  Google Scholar 

  25. A. Distler, T. Sauermann, H-J. Egelhaaf, S. Rodman, D. Waller, K-S. Cheon, M. Lee, and D.M. Guldi: The effect of PCBM dimerization on the performance of bulk heterojunction solar cells. Adv. Energy Mater. 4, 1300693 (2014).

    Article  Google Scholar 

  26. A. Dzwilewski, T. Wågberg, and L. Edman: Photo-induced and resist-free imprint patterning of fullerene materials for use in functional electronics. J. Am. Chem. Soc. 131, 4006–4011 (2009).

    Article  CAS  Google Scholar 

  27. T. Heumueller, W.R. Mateker, A. Distler, U.F. Fritze, R. Cheacharoen, W.H. Nguyen, M. Biele, M. Salvador, M. von Delius, H-J. Egelhaaf, M.D. McGehee, and C.J. Brabec: Morphological and electrical control of fullerene dimerization determines organic photovoltaic stability. Energy Environ. Sci. 9, 247–256 (2016).

    Article  CAS  Google Scholar 

  28. P. Zhou, Z-H. Dong, A.M. Rao, and P.C. Eklund: Reaction mechanism for the photopolymerization of solid fullerene C60. Chem. Phys. Lett. 211, 337 (1993).

    Article  CAS  Google Scholar 

  29. P.C. Eklund, A.M. Rao, P. Zhou, Y. Wang, and J.M. Holden: Photochemical transformation of C60 and C70 films. Thin Solid Films 257, 185–203 (1995).

    Article  CAS  Google Scholar 

  30. S. Chambon, A. Rivaton, J-L. Gardette, and M. Firon: Photo- and thermal degradation of MDMO-PPV:PCBM blends. Sol. Energy Mater. Sol. Cells 91, 394–398 (2007).

    Article  CAS  Google Scholar 

  31. M.O. Reese, A.M. Nardes, B.L. Rupert, R.E. Larsen, D.C. Olson, M.T. Lloyd, S.E. Shaheen, D.S. Ginley, G. Rumbles, and N. Kopidakis: Photoinduced degradation of polymer and polymer-fullerene active layers: Experiment and theory. Adv. Funct. Mater. 20, 3476–3483 (2010).

    Article  CAS  Google Scholar 

  32. R. Taylor, M.P. Barrow, and T.A. Drewello: C60 degrades to C120O. Chem. Commun., 2497–2498 (1998).

  33. P. Paul, R.D. Bolskar, A.M. Clark, and C.A. Reed: The origin of the ‘spike’ in the EPR spectrum of C60. Chem. Commun., 1229–1230 (2000).

  34. J. De Ceuster, E. Goovaerts, A. Bouwen, J.C. Hummelen, and V. Dyakonov: High-frequency (95 GHz) electron paramagnetic resonance study of the photoinduced charge transfer in conjugated polymer–fullerene composites. Phys. Rev. B 64, 195206 (2001).

    Article  Google Scholar 

  35. J. Niklas, K.L. Mardis, B.P. Banks, G.M. Grooms, A. Sperlich, V. Dyakonov, S. Beaupre, M. Leclerc, T. Xu, L. Yu, and O.G. Poluektov: Highly-efficient charge separation and polaron delocalization in polymer–fullerene bulk-heterojunctions: A comparative multi-frequency EPR and DFT study. Phys. Chem. Chem. Phys. 15, 9562–9574 (2013).

    Article  CAS  Google Scholar 

  36. O.G. Poluektov, S. Filippone, N. Martin, A. Sperlich, C. Deibel, and V. Dyakonov: Spin signatures of photogenerated radical anions in polymer–[70]fullerene bulk heterojunctions: High frequency pulsed EPR spectroscopy. J. Phys. Chem. B 114, 14426–14429 (2010).

    Article  CAS  Google Scholar 

  37. K.L. Mardis, J.N. Webb, T. Holloway, J. Niklas, and O.G. Poluektov: Electronic structure of fullerene acceptors in organic bulk-heterojunctions: A combined EPR and DFT study. J. Phys. Chem. Lett. 6, 4730–4735 (2015).

    Article  CAS  Google Scholar 

  38. A. Konkin, U. Ritter, P. Scharff, G. Mamin, A. Aganov, S. Orlinskii, V. Krinichnyi, D.A.M. Egbe, G. Ecke, and H. Romanus: Multifrequency X,W-band ESR study on photo-induced ion radical formation in solid films of mono- and di-fullerenes embedded in conjugated polymers. Carbon 77, 11–17 (2014).

    Article  CAS  Google Scholar 

  39. C.A. Reed and R.D. Bolskar: Discrete fulleride anions and fullerenium cations. Chem. Rev. 100, 1075–1120 (2000).

    Article  CAS  Google Scholar 

  40. P. Rapta, A. Bartl, A. Gomorov, A. Stasko, and L. Dunsch: In situ ESR/Vis/NIR spectroelectrochemistry of [60]fullerene: The origin of ESR “spikes” and the reactivity of pristine fullerene anions. ChemPhysChem 3, 351–355 (2002).

    Article  CAS  Google Scholar 

  41. A. Sperlich, H. Kraus, C. Deibel, H. Blok, J. Schmidt, and V. Dyakonov: Reversible and irreversible interactions of poly(3-hexylthiophene) with oxygen studied by spin-sensitive methods. J. Phys. Chem. B 115, 13513–13518 (2011).

    Article  CAS  Google Scholar 

  42. H. Santos Silva, I. Fraga Domínguez, A. Perthué, P.D. Topham, P-O. Bussière, R.C. Hiorns, C. Lombard, A. Rivaton, D. Bégué, and B. Pépin-Donat: Designing intrinsically photostable low band gap polymers: A smart tool combining EPR spectroscopy and DFT calculations. J. Mater. Chem. A 4, 15647–15654 (2016).

    Article  CAS  Google Scholar 

  43. S. Chambon, L. Derue, M. Lahaye, B. Pavageau, L. Hirsch, and G. Wantz: MoO3 thickness, thermal annealing and solvent annealing effects on inverted and direct polymer photovoltaic solar cells. Materials 5, 2521–2536 (2012).

    Article  CAS  Google Scholar 

  44. A.D. Becke: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98, 5648–5652 (1993).

    Article  CAS  Google Scholar 

  45. C. Lee, W. Yang, and R.G. Parr: Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37, 785–789 (1988).

    Article  CAS  Google Scholar 

  46. S.H. Vosko, L. Wilk, and M. Nusair: Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 58, 1200–1211 (1980).

    Article  CAS  Google Scholar 

  47. S. Grimme, S. Ehrlich, and L. Goerigk: Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported by the Agence Nationale de la Recherche (ANR) through the PROGELEC 2013 program “HELIOS” (ANR-13-PRGE-0006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Agnès Rivaton or Guillaume Wantz.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Perthué, A., Gorisse, T., Silva, H.S. et al. New insights into polymer solar cells stability: The crucial role of PCBM oxidation. Journal of Materials Research 33, 1868–1878 (2018). https://doi.org/10.1557/jmr.2018.141

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.141

Navigation