Skip to main content
Log in

Effects of twins and precipitates at twin boundaries on Hall–Petch relation in high nitrogen stainless steel

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The microstructure evolution of high nitrogen austenitic steel wires under various annealing times and drawing temperatures was carefully characterized. Special attention was paid to the widely distributed twins and the nanoprecipitates at twin boundaries (TBs) in high nitrogen stainless steels (HNSSs). The results of microhardness indicated that the traditional Hall–Petch (H–P) equation, which only took the role of grain boundaries into account, was unsuitable. A new H–P equation that connected grain size, twin density, precipitates at TBs, and microhardness in HNSS was established for the first time and showed to be in good agreement with the experimental results. By analyzing the strained regions near TBs, a model describing the precipitation of nano-M23C6 carbides on coherent twin boundaries and incoherent twin boundaries was proposed. In addition, the influence mechanism of the nano-M23C6 at TBs on microhardness was discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. U.K. Mudali and B. Raj: High Nitrogen Steels and Stainless Steels: Manufacturing, Properties and Applications (Alpha Science International, Pangbourne, England, 2004); p. 50.

    Google Scholar 

  2. M. Pujar, U.K. Mudali, and S.S. Singh: Electrochemical noise studies of the effect of nitrogen on pitting corrosion resistance of high nitrogen austenitic stainless steels. Corros. Sci. 53, 4178 (2011).

    Article  CAS  Google Scholar 

  3. F. Shi, P. Tian, N. Jia, Z. Ye, Y. Qi, C. Liu, and X. Li: Improving intergranular corrosion resistance in a nickel-free and manganese-bearing high-nitrogen austenitic stainless steel through grain boundary character distribution optimization. Corros. Sci. 107, 49 (2016).

    Article  CAS  Google Scholar 

  4. S. Wang, K. Yang, Y. Shan, and L. Li: Study of cold deformation behaviors of a high nitrogen austenitic stainless steel and 316 L stainless steel. Acta Metall. Sin. 43, 171 (2007).

    CAS  Google Scholar 

  5. X. Gu, G.M. Michal, F. Ernst, H. Kahn, and A.H. Heuer: Numerical simulations of carbon and nitrogen composition-depth profiles in nitrocarburized austenitic stainless steels. Metall. Mater. Trans. A 45, 4268 (2014).

    Article  CAS  Google Scholar 

  6. H-Y. Ha, T-H. Lee, C-S. Oh, and S-J. Kim: Effects of combined addition of carbon and nitrogen on pitting corrosion behavior of Fe–18Cr–10Mn alloys. Scr. Mater. 61, 121 (2009).

    Article  CAS  Google Scholar 

  7. L.L. Shaw, A.L. Ortiz, and J.C. Villegas: Hall–Petch relationship in a nanotwinned nickel alloy. Scr. Mater. 58, 951 (2008).

    Article  CAS  Google Scholar 

  8. L. Lu, Y. Shen, X. Chen, L. Qian, and K. Lu: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 (2004).

    Article  CAS  Google Scholar 

  9. Y.S. Sato, M. Urata, H. Kokawa, and K. Ikeda: Hall–Petch relationship in friction stir welds of equal channel angular-pressed aluminium alloys. Mater. Sci. Eng., A 354, 298 (2003).

    Article  CAS  Google Scholar 

  10. R. Armstrong, I. Codd, R. Douthwaite, and N. Petch: The plastic deformation of polycrystalline aggregates. Philos. Mag. 7, 45 (1962).

    Article  CAS  Google Scholar 

  11. R. Masumura, P. Hazzledine, and C. Pande: Yield stress of fine grained materials. Acta Mater. 46, 4527 (1998).

    Article  CAS  Google Scholar 

  12. J. Hu, Y. Shi, X. Sauvage, G. Sha, and K. Lu: Grain boundary stability governs hardening and softening in extremely fine nanograined metals. Science 355, 1292 (2017).

    Article  CAS  Google Scholar 

  13. W.J. Nam, C.M. Bae, and C.S. Lee: Effect of carbon content on the Hall–Petch parameter in cold drawn pearlitic steel wires. J. Mater. Sci. 37, 2243 (2002).

    Article  CAS  Google Scholar 

  14. I. Kemp: Control of Mechanical Properties in High Strain Wire Drawing of Pearlitic Steel, in Materials Forum (Institute of Metals and Materials Australasia, Melbourne, Australia, 1990); p. 270.

    Google Scholar 

  15. Z. Yanushkevich, S. Dobatkin, A. Belyakov, and R. Kaibyshev: Hall–Petch relationship for austenitic stainless steels processed by large strain warm rolling. Acta Mater. 136, 39 (2017).

    Article  CAS  Google Scholar 

  16. M. Odnobokova, M. Tikhonova, A. Belyakov, and R. Kaibyshev: Development of Σ3n CSL boundaries in austenitic stainless steels subjected to large strain deformation and annealing. J. Mater. Sci. 52, 4210 (2017).

    Article  CAS  Google Scholar 

  17. D. Du, R. Fu, Y. Li, L. Jing, J. Wang, Y. Ren, and K. Yang: Modification of the Hall–Petch equation for friction-stir-processing microstructures of high-nitrogen steel. Mater. Sci. Eng., A 640, 190 (2015).

    Article  CAS  Google Scholar 

  18. N. Hansen: Hall–Petch relation and boundary strengthening. Scr. Mater. 51, 801 (2004).

    Article  CAS  Google Scholar 

  19. A.A. Salem, S.R. Kalidindi, and R.D. Doherty: Strain hardening regimes and microstructure evolution during large strain compression of high purity titanium. Scr. Mater. 46, 419 (2002).

    Article  CAS  Google Scholar 

  20. A. Rohatgi, K.S. Vecchio, and G.T. Gray: The influence of stacking fault energy on the mechanical behavior of Cu and Cu–Al alloys: Deformation twinning, work hardening, and dynamic recovery. Metall. Mater. Trans. A 32, 135 (2001).

    Article  Google Scholar 

  21. Y.F. Shen, L. Lu, Q.H. Lu, Z.H. Jin, and K. Lu: Tensile properties of copper with nano-scale twins. Scr. Mater. 52, 989 (2005).

    Article  CAS  Google Scholar 

  22. X. Zhang, A. Misra, H. Wang, M. Nastasi, J.D. Embury, T.E. Mitchell, R.G. Hoagland, and J.P. Hirth: Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. Appl. Phys. Lett. 84, 1096 (2004).

    Article  CAS  Google Scholar 

  23. C. Pande, B. Rath, and M. Imam: Effect of annealing twins on Hall–Petch relation in polycrystalline materials. Mater. Sci. Eng., A 367, 171 (2004).

    Article  CAS  Google Scholar 

  24. C.M. Hong, J. Shi, L.Y. Sheng, W.C. Cao, W.J. Hui, and H. Dong: Effects of hot-working parameters on microstructural evolution of high nitrogen austenitic stainless steel. Mater. Des. 32, 3711 (2011).

    Article  CAS  Google Scholar 

  25. F.J. Humphreys: Quantitative metallography by electron backscattered diffraction. J. Microsc. 195, 170 (1999).

    Article  CAS  Google Scholar 

  26. A.D. Schino and J.M. Kenny: Grain refinement strengthening of a micro-crystalline high nitrogen austenitic stainless steel. Mater. Lett. 57, 1830 (2003).

    Article  CAS  Google Scholar 

  27. N.V. Malyar, J.S. Micha, G. Dehm, and C. Kirchlechner: Dislocation-twin boundary interaction in small scale Cu bi-crystals loaded in different crystallographic directions. Acta Mater. 129, 91 (2017).

    Article  CAS  Google Scholar 

  28. X. Li, Y. Wei, L. Lu, K. Lu, and H. Gao: Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464, 877 (2010).

    Article  CAS  Google Scholar 

  29. J. Kacher, B.P. Eftink, B. Cui, and I.M. Robertson: Dislocation interactions with grain boundaries. Curr. Opin. Solid State Mater. Sci. 18, 227 (2014).

    Article  CAS  Google Scholar 

  30. K. Lu, L. Lu, and S. Suresh: Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349 (2009).

    Article  CAS  Google Scholar 

  31. N.V. Malyar, J.S. Micha, G. Dehm, and C. Kirchlechner: Size effect in bi-crystalline micropillars with a penetrable high angle grain boundary. Acta Mater. 129, 312 (2017).

    Article  CAS  Google Scholar 

  32. V. Gavriljuk, Y. Petrov, and B. Shanina: Effect of nitrogen on the electron structure and stacking fault energy in austenitic steels. Scripta Mater. 55, 537 (2006).

    Article  CAS  Google Scholar 

  33. T. Yonezawa, K. Suzuki, S. Ooki, and A. Hashimoto: The effect of chemical composition and heat treatment conditions on stacking fault energy for Fe–Cr–Ni austenitic stainless steel. Metall. Mater. Trans. A 44, 5884 (2013).

    Article  CAS  Google Scholar 

  34. M. Polcarová, J. Gemperlová, A. Jacques, J. Brádler, and A. George: Synchrotron radiation topographic study of slip transfer across grain boundaries in Fe–Si bicrystals. Opt. Eng. 39, 4440 (2006).

    Google Scholar 

  35. P.J. Imrich, C. Kirchlechner, and G. Dehm: Influence of inclined twin boundaries on the deformation behavior of Cu micropillars. Mater. Sci. Eng., A 642, 65 (2015).

    Article  CAS  Google Scholar 

  36. Z.H. Jin, P. Gumbsch, K. Albe, E. Ma, K. Lu, H. Gleiter, and H. Hahn: Interactions between non-screw lattice dislocations and coherent twin boundaries in face-centered cubic metals. Acta Mater. 56, 1126 (2008).

    Article  CAS  Google Scholar 

  37. V. Randle: Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials. Acta Mater. 47, 4187 (1999).

    Article  CAS  Google Scholar 

  38. T. Watanabe: The importance of grain boundary character distribution (GBCD) to recrystallization, grain growth and texture. Scripta Metall. Mater. 27, 1497 (1992).

    Article  CAS  Google Scholar 

  39. P.J. Imrich, C. Kirchlechner, C. Motz, and G. Dehm: Differences in deformation behavior of bicrystalline Cu micropillars containing a twin boundary or a large-angle grain boundary. Acta Mater. 73, 240 (2014).

    Article  CAS  Google Scholar 

  40. B. Weiss and R. Stickler: Phase instabilities during high temperature exposure of 316 austenitic stainless steel. Metall. Mater. Trans. B 3, 851 (1972).

    Article  CAS  Google Scholar 

  41. M.H. Lewis and B. Hattersley: Precipitation of M23C6 in austenitic steels. Acta Metall. 13, 1159 (1965).

    Article  CAS  Google Scholar 

  42. K. Kaneko, T. Fukunaga, K. Yamada, N. Nakada, M. Kikuchi, Z. Saghi, J.S. Barnard, and P.A. Midgley: Formation of M23C6-type precipitates and chromium-depleted zones in austenite stainless steel. Scr. Mater. 65, 509 (2011).

    Article  CAS  Google Scholar 

  43. B. Sasmal: Formation of lamellar M23C6 on and near twin boundaries in austenitic stainless steels. Bull. Mater. Sci. 6, 617 (1984).

    Article  CAS  Google Scholar 

  44. S. Mahajan, C. Pande, M. Imam, and B. Rath: Formation of annealing twins in fcc crystals. Acta Mater. 45, 2633 (1997).

    Article  CAS  Google Scholar 

  45. E.A. Trillo and L.E. Murr: A TEM investigation of M23C6 carbide precipitation behaviour on varying grain boundary misorientations in 304 stainless steels. J. Mater. Sci. 33, 1263 (1998).

    Article  CAS  Google Scholar 

  46. N. Li, J. Wang, A. Misra, X. Zhang, J.Y. Huang, and J.P. Hirth: Twinning dislocation multiplication at a coherent twin boundary. Acta Mater. 59, 5989 (2011).

    Article  CAS  Google Scholar 

  47. D. Hull and D.J. Bacon: Introduction to Dislocations, 4th ed. (Butterworth-Heinemann Publications, Oxford, Great Britain, 2001); p. 157.

    Book  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to acknowledge the financial support from Project of Science and Technology Plan of Hebei Province (No. 15211007D). The authors are also appreciative of the facilities and assistance provided by the Electron Microscope Unit at the HBIS research institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuai Ren.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ren, S., Sun, Z., Xu, Z. et al. Effects of twins and precipitates at twin boundaries on Hall–Petch relation in high nitrogen stainless steel. Journal of Materials Research 33, 1764–1772 (2018). https://doi.org/10.1557/jmr.2018.138

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.138

Navigation