Skip to main content
Log in

Optimizing fatigue performance of nacre-mimetic PE/TiO2 nanolayered composites by tailoring thickness ratio

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Nacre-mimetic (PE/TiO2)4 nanolayered composites (NLCs) with the nanocrystalline TiO2 layer thickness less than 30 nm and different thickness ratios of inorganic/organic layers were successfully prepared by using layer-by-layer self-assembly and chemical bath deposition method. Mechanical properties, especially fatigue properties of the NLCs with different thickness ratios were evaluated. The elastic modulus, hardness and fracture toughness, strain amplitude to fatigue limits of the NLCs reached 27.78 ± 5.69 GPa, 1.33 ± 0.31 GPa, and 4.16 ± 0.20 MPa m1/2, respectively. Fatigue performance of the NLCs in the high and low cycle fatigue regimes was optimized by tailoring the thickness ratio of the TiO2/PE layers. The PE/TiO2 NLCs with the larger thickness ratio of ∼3 has the high fatigue limit (the critical strain amplitude of 0.0853%) in the high-cycle fatigue regime, while that with the smaller thickness ratio of ∼1 and ∼0.5 are of the good fatigue strength in the low-cycle fatigue regime. The basic mechanism for the enhanced fatigue performance is elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. X.D. Li and P. Nardi: Micro/nanomechanical characterization of a natural nanocomposite material—The shell of Pectinidae. Nanotechnology 15, 211 (2004).

    Article  Google Scholar 

  2. J.D. Currey: Mechanical-properties of mother of pearl in tension. Proc. R. Soc., Ser. B 196, 443 (1977).

    Google Scholar 

  3. H.D. Espinosa, J.E. Rim, and F. Barthelat: Merger of structure and material in nacre and bone—Perspectives on de novo biomimetic materials. Prog. Mater. Sci. 54, 1059 (2009).

    Article  CAS  Google Scholar 

  4. F. Song, A.K. Soh, and Y.L. Bai: Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24, 3623 (2003).

    Article  CAS  Google Scholar 

  5. R.Z. Wang, Z. Suo, A.G. Evans, N. Yao, and I.A. Aksay: Deformation mechanisms in nacre. J. Mater. Res. 16, 2485 (2011).

    Article  Google Scholar 

  6. H. Li, Y. Yue, X. Han, and X. Li: Plastic deformation enabled energy dissipation in a bionanowire structured armor. Nano Lett. 14, 2578 (2014).

    Article  CAS  Google Scholar 

  7. Z. Huang, H. Li, Z. Pan, Q. Wei, Y.J. Chao, and X. Li: Uncovering high-strain rate protection mechanism in nacre. Sci. Rep. 1, 1 (2011).

    Article  CAS  Google Scholar 

  8. X.D. Li, W.C. Chang, Y.J. Chao, R.Z. Wang, and M. Chang: Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Lett. 4, 613 (2004).

    Article  CAS  Google Scholar 

  9. Z. Huang and X. Li: Origin of flaw-tolerance in nacre. Sci. Rep. 3, 1 (2013).

    Google Scholar 

  10. L.J. Bonderer, A.R. Studart, and L.J. Gauckler: Bioinspired design and assembly of platelet reinforced polymer films. Science 319, 1069 (2008).

    Article  CAS  Google Scholar 

  11. H. Zhao, Y. Yue, L. Guo, J. Wu, Y. Zhang, X. Li, S. Mao, and X. Han: Cloning Nacre’s 3D interlocking skeleton in engineering composites to achieve exceptional mechanical properties. Adv. Mater. 28, 5099 (2016).

    Article  CAS  Google Scholar 

  12. H.L. Gao, S.M. Chen, L.B. Mao, Z.Q. Song, H.B. Yao, H. Colfen, X.S. Luo, F. Zhang, Z. Pan, Y.F. Meng, Y. Ni, and S.H. Yu: Mass production of bulk artificial nacre with excellent mechanical properties. Nat. Commun. 8, 1 (2017).

    Article  Google Scholar 

  13. H. Bai, F. Walsh, B. Gludovatz, B. Delattre, C. Huang, Y. Chen, A.P. Tomsia, and R.O. Ritchie: Bioinspired hydroxyapatite/poly(methyl methacrylate) composite with a nacre-mimetic architecture by a bidirectional freezing method. Adv. Mater. 28, 50 (2016).

    Article  CAS  Google Scholar 

  14. Z. Tang, N.A. Kotov, S. Magonov, and B. Ozturk: Nanostructured artificial nacre. Nat. Mater. 2, 413 (2003).

    Article  CAS  Google Scholar 

  15. P. Das, H. Thomas, M. Moeller, and A. Walther: Large-scale, thick, self-assembled, nacre-mimetic brick-walls as fire barrier coatings on textiles. Sci. Rep. 7, 1 (2017).

    Article  Google Scholar 

  16. J. Wang, Q. Cheng, L. Lin, and L. Jiang: Synergistic toughening of bioinspired poly(vinyl alcohol)-clay-nanofibrillar cellulose artificial nacre. ACS Nano 8, 2739 (2014).

    Article  CAS  Google Scholar 

  17. Y. Zhang and X. Li: Bioinspired, graphene/Al2O3 doubly reinforced aluminum composites with high strength and toughness. Nano Lett. 17, 6907 (2017).

    Article  CAS  Google Scholar 

  18. N. Zhao, M. Yang, Q. Zhao, W. Gao, T. Xie, and H. Bai: Superstretchable nacre-mimetic graphene/poly(vinyl alcohol) composite film based on interfacial architectural engineering. ACS Nano 11, 4777 (2017).

    Article  CAS  Google Scholar 

  19. Q. Cheng, M. Li, L. Jiang, and Z. Tang: Bioinspired layered composites based on flattened double-walled carbon nanotubes. Adv. Mater. 24, 1838 (2012).

    Article  CAS  Google Scholar 

  20. S. Wan, Q. Zhang, X. Zhou, D. Li, B. Ji, L. Jiang, and Q. Cheng: Fatigue resistant bioinspired composite from synergistic two-dimensional nanocomponents. ACS Nano 11, 7074 (2017).

    Article  CAS  Google Scholar 

  21. S. Wan, F. Xu, L. Jiang, and Q. Cheng: Superior fatigue resistant bioinspired graphene-based nanocomposite via synergistic interfacial interactions. Adv. Funct. Mater. 27, 1 (2017).

    Google Scholar 

  22. G. Decher: Fuzzy nanoassemblies: Toward layered polymeric multicomposites. Science 277, 1232 (1997).

    Article  CAS  Google Scholar 

  23. Z. Burghard, L. Zini, V. Srot, P. Bellina, P.A. van Aken, and J. Bill: Toughening through nature-adapted nanoscale design. Nano Lett. 9, 4103 (2009).

    Article  CAS  Google Scholar 

  24. M.R. De Guire, T.P. Niesen, S. Supothina, J. Wolff, J. Bill, C.N. Sukenik, F. Aldinger, A.H. Heuer, and M. Ruhle: Synthesis of oxide and non-oxide inorganic materials at organic surfaces. Z. Metallkd. 89, 758 (1998).

    Google Scholar 

  25. H.F. Tan, B. Zhang, J.W. Yan, X.D. Sun, and G.P. Zhang: Synthesis and toughening behavior of bio-inspired nanocrystalline TiO2/polyelectrolyte nanolayered composites. Mater. Res. Bull. 50, 128 (2014).

    Article  CAS  Google Scholar 

  26. B. Zhang, H.F. Tan, J.W. Yan, M.D. Zhang, X.D. Sun, and G.P. Zhang: Microstructures and mechanical performance of polyelectrolyte/nanocrystalline TiO2 nanolayered composites. Nanoscale Res. Lett. 8, 1 (2013).

    Article  CAS  Google Scholar 

  27. Z. Burghard, A. Tucic, and L.P.H. Jeurgens: Nanomechanical properties of bioinspired organic–inorganic composite films. Adv. Mater. 19, 970 (2007).

    Article  CAS  Google Scholar 

  28. Y.J. Yang, B. Zhang, H.F. Tan, X.M. Luo, and G.P. Zhang: Fatigue and fracture reliability of shell-mimetic PE/TiO2 nanolayered composites. Adv. Eng. Mater. 19, 1 (2017).

    Google Scholar 

  29. H.J. Gao, B.H. Ji, I.L. Jager, E. Arzt, and P. Fratzl: Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl. Acad. Sci. U.S.A. 100, 5597 (2003).

    Article  CAS  Google Scholar 

  30. R.C. Hoffmann, J.C. Bartolome, S. Wildhack, L.P.H. Jeurgens, J. Bill, and F. Aldinger: Relation between particle growth kinetics in solution and surface morphology of thin films: Implications on the deposition of titania on polyethylene terephthalate. Thin Solid Films 478, 164 (2005).

    Article  CAS  Google Scholar 

  31. T. Ohmura, S. Matsuoka, K. Tanaka, and T. Yoshida: Nanoindentation load-displacement behavior of pure face centered cubic metal thin films on a hard substrate. Thin Solid Films 385, 198 (2001).

    Article  CAS  Google Scholar 

  32. S.R. Jian, G.J. Chen, and T.C. Lin: Berkovich nanoindentation on AlN thin films. Nanoscale Res. Lett. 5, 935 (2010).

    Article  CAS  Google Scholar 

  33. Z. Xia, W.A. Curtin, and B.W. Sheldon: A new method to evaluate the fracture toughness of thin films. Acta Mater. 52, 3507 (2004).

    Article  CAS  Google Scholar 

  34. C.Y. Dai, X.F. Zhu, and G.P. Zhang: Tensile and fatigue properties of free-standing Cu foils. J. Mater. Sci. Technol. 25, 721 (2009).

    Article  CAS  Google Scholar 

  35. S. Yamabi and H. Imai: Crystal phase control for titanium dioxide films by direct deposition in aqueous solutions. Chem. Mater. 14, 609 (2002).

    Article  CAS  Google Scholar 

  36. B.H. Ji and H.J. Gao: Mechanical properties of nanostructure of biological materials. J. Mater. Sci. Technol. 52, 1963 (2004).

    Google Scholar 

  37. D. Wang, C.A. Volkert, and O. Kraft: Effect of length scale on fatigue life and damage formation in thin Cu films. Mater. Sci. Eng., A 493, 267 (2008).

    Article  Google Scholar 

  38. W.W. Gerberich, J. Michler, W.M. Mook, R. Ghisleni, F. Östlund, D.D. Stauffer, and R. Ballarini: Scale effects for strength, ductility, and toughness in “brittle” materials. J. Mater. Res. 24, 898 (2009).

    Article  CAS  Google Scholar 

  39. S. Suresh: Fatigue of Materials, 2nd ed. (Cambridge University Press, Cambridge, 1998).

    Book  Google Scholar 

  40. X. Tao, J. Liu, G. Koley, and X. Li: B/SiOx nanonecklace reinforced nanocomposites by unique mechanical interlocking mechanism. Adv. Mater. 20, 4091 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported by the National Natural Science Foundation of China (NSFC, Grant Nos. 51671050 and 51571199).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bin Zhang or Guang-Ping Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, YJ., Zhang, B., Wan, HY. et al. Optimizing fatigue performance of nacre-mimetic PE/TiO2 nanolayered composites by tailoring thickness ratio. Journal of Materials Research 33, 1543–1552 (2018). https://doi.org/10.1557/jmr.2018.134

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.134

Navigation