Skip to main content
Log in

Three-dimensional study of twin boundaries in conventional and grain boundary-engineered 316L stainless steels

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The three-dimensional microstructures of two conventional 316L stainless steels and a grain boundary (GB)-engineered version of the same steel have been characterized by using serial sectioning and electron backscatter diffraction mapping. The morphologies, area fractions, and number fractions of twin boundaries (TBs) were measured and compared, and the random boundary connectivity was evaluated. Although two-dimensional observations suggest that TBs are planar, occluded twin-grains and tunnel-shaped TBs were also observed. In addition, some large and morphologically complex TBs were observed in the GB-engineered sample, and these TBs were responsible for the increase in the twin area fraction that has been reported in past studies. While GB engineering increased the boundary area fraction, the TB number fraction was almost unchanged. Because the GB engineering process changed only the area fraction and not the number fraction, the connectivity of random boundaries was not disrupted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. H.C.H. Carpenter and S. Tamura: The formation of twinned metallic crystals. Proc. R. Soc. London 113, 161 (1926).

    CAS  Google Scholar 

  2. S. Mahajan, C.S. Pande, M.A. Imam, and B.B. Rath: Formation of annealing twins in f.c.c. crystals. Acta Mater. 45, 2633 (1997).

    Article  CAS  Google Scholar 

  3. H. Li, S. Xia, B. Zhou, W. Chen, and C. Hu: The dependence of carbide morphology on grain boundary character in the highly twinned alloy 690. J. Nucl. Mater. 399, 108 (2010).

    Article  CAS  Google Scholar 

  4. P. Lin, G. Palumbo, U. Erb, and K.T. Aust: Influence of grain boundary character distribution on sensitization and intergranular corrosion of alloy 600. Scr. Metall. Mater. 33, 1387 (1995).

    Article  CAS  Google Scholar 

  5. M. Michiuchi, H. Kokawa, Z.J. Wang, Y.S. Sato, and K. Sakai: Twin-induced grain boundary engineering for 316 austenitic stainless steel. Acta Mater. 54, 5179 (2006).

    Article  CAS  Google Scholar 

  6. L. Tan, T.R. Allen, and J.T. Busby: Grain boundary engineering for structure materials of nuclear reactors. J. Nucl. Mater. 441, 661 (2013).

    Article  CAS  Google Scholar 

  7. C.L. Hu, S. Xi, H. Li, T.G. Liu, B.X. Zhou, W.J. Chen, and N. Wang: Improving the intergranular corrosion resistance of 304 stainless steel by grain boundary network control. Corros. Sci. 53, 1880 (2011).

    Article  CAS  Google Scholar 

  8. S. Xia, H. Li, T.G. Liu, and B.X. Zhou: Appling grain boundary engineering to alloy 690 tube for enhancing intergranular corrosion resistance. J. Nucl. Mater. 416, 303 (2011).

    Article  CAS  Google Scholar 

  9. E.A. West and G.S. Was: IGSCC of grain boundary engineered 316L and 690 in supercritical water. J. Nucl. Mater. 392, 264 (2009).

    Article  CAS  Google Scholar 

  10. V.Y. Gertsman and S.M. Bruemmer: Study of grain boundary character along intergranular stress corrosion crack paths in austenitic alloys. Acta Mater. 49, 1589 (2001).

    Article  CAS  Google Scholar 

  11. D.L. Engelberg, T.J. Marrow, R.C. Newman, and L. Babouta: Grain boundary engineering for crack bridging: A new model for intergranular stress corrosion crack (IGSCC) propagation. In Environment-Induced Cracking of Materials, S.A. Shipilov, R.H. Jones, J.-M. Olive, and R.B. Rebak, eds. (Elsevier, Amsterdam, Netherlands, 2008); pp. 69–79.

    Chapter  Google Scholar 

  12. T. Watanabe: Approch to grain boundary design for strong and ductile polycrystals. Res Mech. 11, 47 (1984).

    CAS  Google Scholar 

  13. T.G. Liu, S. Xia, H. Li, B.X. Zhou, Q. Bai, C. Su, and Z.G. Cai: Effect of initial grain sizes on the grain boundary network during grain boundary engineering in alloy 690. J. Mater. Res. 28, 1165 (2013).

    Article  CAS  Google Scholar 

  14. T.G. Liu, S. Xia, H. Li, B.X. Zhou, and Q. Bai: Effect of the pre-existing carbides on the grain boundary network during grain boundary engineering in a nickel based alloy. Mater. Charact. 91, 89 (2014).

    Article  CAS  Google Scholar 

  15. V. Randle and M. Coleman: A study of low-strain and medium-strain grain boundary engineering. Acta Mater. 57, 3410–3421 (2009).

    Article  CAS  Google Scholar 

  16. V. Randle: Mechanism of twinning-induced grain boundary engineering in low stacking-fault energy materials. Acta Mater. 47, 4187 (1999).

    Article  CAS  Google Scholar 

  17. S. Kobayashi, R. Kobayashi, and T. Watanabe: Control of grain boundary connectivity based on fractal analysis for improvement of intergranular corrosion resistance in SUS316L austenitic stainless steel. Acta Mater. 102, 397 (2016).

    Article  CAS  Google Scholar 

  18. X. Wang, A. Dallemagne, Y. Hou, and S. Yang: Effect of thermomechanical processing on grain boundary character distribution of Hastelloy X alloy. Mater. Sci. Eng., A 669, 95 (2016).

    Article  CAS  Google Scholar 

  19. S. Xia, B.X. Zhou, and W.J. Chen: Grain cluster microstructure and grain boundary character distribution in alloy 690. Metall. Mater. Trans. A 40, 3016 (2009).

    Article  CAS  Google Scholar 

  20. W. Cao, S. Xia, Q. Bai, W. Zhang, B. Zhou, Z. Li, and L. Jiang: Effects of initial microstructure on the grain boundary network during grain boundary engineering in Hastelloy N alloy. J. Alloys Compd. 704, 724 (2017).

    Article  CAS  Google Scholar 

  21. D.L. Engelberg, R.C. Newman, and T.J. Marrow: Effect of thermomechanical process history on grain boundary control in an austenitic stainless steel. Scripta Mater. 59, 554 (2008).

    Article  CAS  Google Scholar 

  22. S.S. Katnagallu, S. Mandal, A.C. Nagaraja, B. De Boer, and S.S. Vadlamani: Role of carbide precipitates and process parameters on achieving grain boundary engineered microstructure in a Ni-based superalloy. Metall. Mater. Trans. A 46, 4740 (2015).

    Article  CAS  Google Scholar 

  23. V.Y. Gertsman and C.H. Henager: Grain boundary junctions in microstructure generated by multiple twinning. Interface Sci. 11, 403 (2003).

    Article  CAS  Google Scholar 

  24. T.G. Liu, S. Xia, H. Li, B.X. Zhou, and Q. Bai: The highly twinned grain boundary network formation during grain boundary engineering. Mater. Lett. 133, 97 (2014).

    Article  CAS  Google Scholar 

  25. T. Liu, S. Xia, B. Wang, Q. Bai, B. Zhou, and C. Su: Grain orientation statistics of grain-clusters and the propensity of multiple-twinning during grain boundary engineering. Mater. Des. 112, 442 (2016).

    Article  CAS  Google Scholar 

  26. J. Lind, S.F. Li, and M. Kumar: Twin related domains in 3D microstructures of conventionally processed and grain boundary engineered materials. Acta Mater. 114, 43 (2016).

    Article  CAS  Google Scholar 

  27. C.M. Barr, A.C. Leff, R.W. Demott, R.D. Doherty, and M.L. Taheri: Unraveling the origin of twin related domains and grain boundary evolution during grain boundary engineering. Acta Mater. 144, 281 (2018).

    Article  CAS  Google Scholar 

  28. M. Kumar, W.E. King, and A.J. Schwartz: Modifications to the microstructural topology in f.c.c. materials through thermomechanical processing. Acta Mater. 48, 2081 (2000).

    Article  CAS  Google Scholar 

  29. G. Palumbo, P.J. King, K.T. Aust, U. Erb, and P.C. Lichtenberger: Grain boundary design and control for intergranular stress-corrosion resistance. Scr. Metall. Mater. 25, 1775 (1991).

    Article  CAS  Google Scholar 

  30. S. Tsurekawa, S. Nakamichi, and T. Watanabe: Correlation of grain boundary connectivity with grain boundary character distribution in austenitic stainless steel. Acta Mater. 54, 3617 (2006).

    Article  CAS  Google Scholar 

  31. S. Tokita, H. Kokawa, Y.S. Sato, and H.T. Fujii: In situ EBSD observation of grain boundary character distribution evolution during thermomechanical process used for grain boundary engineering of 304 austenitic stainless steel. Mater. Charact. 131, 31 (2017).

    Article  CAS  Google Scholar 

  32. M. Frary and C.A. Schuh: Connectivity and percolation behaviour of grain boundary networks in three dimensions. Philos. Mag. 85, 1123 (2005).

    Article  CAS  Google Scholar 

  33. T. Liu, S. Xia, B. Zhou, Q. Bai, and G.S. Rohrer: Three-dimensional characteristics of the grain boundary networks of conventional and grain boundary engineered 316L stainless steel. Mater. Charact. 133, 60 (2017).

    Article  CAS  Google Scholar 

  34. M.A. Meyers and L.E. Murr: A model for the formation of annealing twins in F.C.C. metals and alloys. Acta Metall. 26, 951 (1978).

    Article  CAS  Google Scholar 

  35. J. Bystrzycki and W. Przetakiewicz: 3-Dimensional reconstruction of annealing twins shape in FCC metals by serial sectioning. Scr. Metall. Mater. 27, 893 (1992).

    Article  CAS  Google Scholar 

  36. A. Telang, A.S. Gill, M. Kumar, S. Teysseyre, D. Qian, S.R. Mannava, and V.K. Vasudevan: Iterative thermomechanical processing of alloy 600 for improved resistance to corrosion and stress corrosion cracking. Acta Mater. 113, 180 (2016).

    Article  CAS  Google Scholar 

  37. M.N. Kelly, K. Glowinski, N.T. Nuhfer, and G.S. Rohrer: The five parameter grain boundary character distribution of α-Ti determined from three-dimensional orientation data. Acta Mater. 111, 22 (2016).

    Article  CAS  Google Scholar 

  38. J. Konrad, S. Zaefferer, and D. Raabe: Investigation of orientation gradients around a hard Laves particle in a warm-rolled Fe3Al-based alloy using a 3D EBSD-FIB technique. Acta Mater. 54, 1369 (2006).

    Article  CAS  Google Scholar 

  39. M.D. Uchic, M.A. Groeber, D.M. Dimiduk, and J.P. Simmons: 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scr. Mater. 55, 23 (2006).

    Article  CAS  Google Scholar 

  40. A.C. Lewis, J.F. Bingert, D.J. Rowenhorst, A. Gupta, A.B. Geltmacher, and G. Spanos: Two- and three-dimensional microstructural characterization of a super-austenitic stainless steel. Mat. Sci. Eng., A 418, 11 (2006).

    Article  CAS  Google Scholar 

  41. D.J. Rowenhorst, A.C. Lewis, and G. Spanos: Three-dimensional analysis of grain topology and interface curvature in a beta-titanium alloy. Acta Mater. 58, 5511 (2010).

    Article  CAS  Google Scholar 

  42. F.X. Lin, A. Godfrey, D.J. Jensen, and G. Winther: 3D EBSD characterization of deformation structures in commercial purity aluminum. Mater. Charact. 61, 1203 (2010).

    Article  CAS  Google Scholar 

  43. J.E. Spowart: Automated serial sectioning for 3-D analysis of microstructures. Scr. Mater. 55, 5 (2006).

    Article  CAS  Google Scholar 

  44. M. Groeber and M. Jackson: DREAM.3D: A digital representation environment for the analysis of microstructure in 3D. Integr. Mater. Manuf. Innov. 3, 1 (2014).

    Article  Google Scholar 

  45. U. Ayachit: The ParaView Guide: A Parallel Visualization Application (Published by Kitware, Clifton Park, NY, 2015); pp. 1–276.

    Google Scholar 

  46. M. Groeber, S. Ghosh, M.D. Uchic, and D.M. Dimiduk: A framework for automated analysis and simulation of 3D polycrystalline microstructures: Part 1: Statistical characterization. Acta Mater. 56, 1257 (2008).

    Article  CAS  Google Scholar 

  47. M. Groeber, S. Ghosh, M. Uchic, and D. Dimiduk: A framework for automated analysis and simulation of 3d polycrystalline microstructures. Part 2: Synthetic structure generation. Acta Mater. 56, 1275 (2008).

    Google Scholar 

  48. Y. Bhandari, S. Sarkar, M. Groeber, M.D. Uchic, D.M. Dimiduk, and S. Ghosh: 3D polycrystalline microstructure reconstruction from FIB generated serial sections for FE analysis. Comput. Mater. Sci. 41, 222 (2007).

    Article  CAS  Google Scholar 

  49. D.G. Brandon: The structure of high-angle grain boundaries. Acta Metall. 14, 1479 (1966).

    Article  CAS  Google Scholar 

  50. M.A. Armstrong: Basic Topology (Published by Springer, Berlin, 2010); pp. 115–161.

    Google Scholar 

  51. V. Randle: Twinning-related grain boundary engineering. Acta Mater. 52, 4067–4081 (2004).

    Article  CAS  Google Scholar 

  52. R.L. Fullman and J.C. Fisher: Formation of annealing twins during grain growth. J. Appl. Phys. 22, 1350 (1951).

    Article  CAS  Google Scholar 

  53. S. Dash and N. Brown: An investigation of the origin and growth of annealing twins. Acta Metall. 11, 1067 (1963).

    Article  CAS  Google Scholar 

  54. P.J. Goodhew: Annealing twin formation by boundary dissociation. Met. Sci. 13, 108 (1979).

    Article  CAS  Google Scholar 

  55. P. Haasen: How are new orientations generated during primary recrystallization?MTA 24, 1001 (1993).

    Article  Google Scholar 

  56. D.P. Field, L.T. Bradford, M.M. Nowell, and T.M. Lillo: The role of annealing twins during recrystallization of Cu. Acta Mater. 55, 4233 (2007).

    Article  CAS  Google Scholar 

  57. H. Gleiter: The formation of annealing twins. Acta Metall. 17, 1421 (1969).

    Article  CAS  Google Scholar 

  58. G. Gottstein: Annealing texture development by multiple twinning in f.c.c. crystals. Acta Metall. 32, 1117 (1984).

    Article  CAS  Google Scholar 

  59. B.W. Reed and M. Kumar: Mathematical methods for analyzing highly-twinned grain boundary networks. Scr. Mater. 54, 1029 (2006).

    Article  CAS  Google Scholar 

  60. C. Cayron: Quantification of multiple twinning in face centred cubic materials. Acta Mater. 59, 252 (2011).

    Article  CAS  Google Scholar 

  61. K. Deepak, S. Mandal, C.N. Athreya, D-I. Kim, B.d. Boer, and V. Subramanya Sarma: Implication of grain boundary engineering on high temperature hot corrosion of alloy 617. Corros. Sci. 106, 293 (2016).

    Article  CAS  Google Scholar 

  62. V. Randle and R. Jones: Grain boundary plane distributions and single-step versus multiple-step grain boundary engineering. Mater. Sci. Eng., A 524, 134 (2009).

    Article  CAS  Google Scholar 

  63. L. Tan, K. Sridharan, and T.R. Allen: Effect of thermomechanical processing on grain boundary character distribution of a Ni-based superalloy. J. Nucl. Mater. 371, 171 (2007).

    Article  CAS  Google Scholar 

  64. M. Shimada, H. Kokawa, Z.J. Wang, Y.S. Sato, and I. Karibe: Optimization of grain boundary character distribution for intergranular corrosion resistant 304 stainless steel by twin-induced grain boundary engineering. Acta Mater. 50, 2331 (2002).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Grant Nos. 51671122 and 51701017) and the Fund of Jiangsu Province for the Transformation of Scientific and Technological Achievements (BA2017126).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuang Xia.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, T., Xia, S., Zhou, B. et al. Three-dimensional study of twin boundaries in conventional and grain boundary-engineered 316L stainless steels. Journal of Materials Research 33, 1742–1754 (2018). https://doi.org/10.1557/jmr.2018.133

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.133

Navigation