Skip to main content
Log in

Controllable interlayer shear strength and crystallinity of PEEK components by laser-assisted material extrusion

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Laser-assisted material extrusion was used in this study to realize high-performance 3D printing of semicrystalline polymers. A CO2 laser device was simply integrated into a traditional fused deposition modeling printer to supply the laser. The sample’s surface temperature was changed by controlling the laser power during printing, and thus the interlayer shear strength and crystallinity could both be effectively controlled. By implementing the laser-assisted process, the optimal interlayer shear strength of poly(ether ether ketone) (PEEK) could be improved by more than 45%, and the degree of crystallinity of PEEK was simultaneously improved by up to 34.5%, which has approached to the typical crystallinity of 35%. Therefore, the process provides a very effective solution for additive manufacturing of semicrystalline materials and helps clearly to establish a controllable mapping relationship between the laser parameters and material properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. S.M. Kurtz and J.N. Devine: PEEK biomaterials in trauma, orthopedic, and spinal implants. Biomaterials 28, 4845 (2007).

    Article  CAS  Google Scholar 

  2. J.M. Toth, M. Wang, B.T. Estes, J.L. Scifert, H.B. Seim, and A.S. Turner: Polyetheretherketone as a biomaterial for spinal applications. Biomaterials 27, 324 (2006).

    Article  CAS  Google Scholar 

  3. D.F. Williams, A. Mcnamara, and R.M. Turner: Potential of polyetheretherketone (PEEK) and carbon-fibre-reinforced PEEK in medical applications. J. Mater. Sci. Lett. 6, 188 (1987).

    Article  CAS  Google Scholar 

  4. M. Vaezi and S. Yang: Extrusion-based additive manufacturing of PEEK for biomedical applications. Virtual Phys. Prototyp. 10, 123 (2015).

    Article  Google Scholar 

  5. D. Garcia-Gonzalez, A. Rusinek, T. Jankowiak, and A. Arias: Mechanical impact behavior of polyether–ether–ketone (PEEK). Compos. Struct. 124, 88 (2015).

    Article  Google Scholar 

  6. S. Lovald and S.M. Kurtz: Applications of polyetheretherketone in trauma, arthroscopy, and cranial defect repair. In Peek Biomaterials Handbook, Vol. 243 (S.M. Kurtz, Elsevier Inc., Oxford, United Kingdom, 2012); pp. 243–260.

    Chapter  Google Scholar 

  7. S.M. Kurtz: Chemical and radiation stability of PEEK. In PEEK Biomaterials Handbook (Elsevier Inc., 2012).

    Google Scholar 

  8. A.J. Waddon, M.J. Hill, A. Keller, and D.J. Blundell: On the crystal texture of linear polyaryls (PEEK, PEK, and PPS). J. Mater. Sci. 22, 1773 (1987).

    Article  CAS  Google Scholar 

  9. S. Hamdan and G.M. Swallowe: Crystallinity in PEEK and PEK after mechanical testing and its dependence on strain rate and temperature. J. Polym. Sci., Part B: Polym. Phys. 34, 699 (2015).

    Article  Google Scholar 

  10. M.F. Talbott, G.S. Springer, and L.A. Berglund: The effects of crystallinity on the mechanical properties of PEEK polymer and graphite fiber reinforced PEEK. J. Compos. Mater. 21, 1056 (1987).

    Article  CAS  Google Scholar 

  11. G. Zhang and A.K. Schlarb: Correlation of the tribological behaviors with the mechanical properties of poly-ether-ether-ketones (PEEKs) with different molecular weights and their fiber filled composites. Wear 266, 337 (2009).

    Article  CAS  Google Scholar 

  12. T. Liu, Z. Mo, S. Wang, and H. Zhang: Nonisothermal melt and cold crystallization kinetics of poly(aryl ether ether ketone ketone). Polym. Eng. Sci. 37, 568 (1997).

    Article  CAS  Google Scholar 

  13. T.A. Osswald, E. Baur, S. Brinkmann, and K. Oberbach: International Plastics Handbook: The Resource for Plastics Engineers (Hanser Gardner Publications, Cincinnati, Ohio, 2012).

    Google Scholar 

  14. C. Yang, X. Tian, D. Li, Y. Cao, F. Zhao, and C. Shi: Influence of thermal processing conditions in 3D printing on the crystallinity and mechanical properties of PEEK material. J. Mater. Process. Technol. 248, 1 (2017).

    Article  Google Scholar 

  15. M. Yan, C. Zhou, X. Tian, G. Peng, Y. Cao, and D. Li: Design and selective laser sintering of complex porous polyamide mould for pressure slip casting. Mater. Des. 111, 198 (2016).

    Article  CAS  Google Scholar 

  16. M. Schmidt, D. Pohle, and T. Rechtenwald: Selective laser sintering of PEEK. CIRP Ann. — Manuf. Technol. 56, 205 (2007).

    Article  Google Scholar 

  17. L.I. Xin, L.S. Sun, L. Yang, J.L. Peng, L.I. Hong-Bo, and Y. Jen-Taut: FDM 3D printing polymer modification progress and application. Chin. J. Polym. Sci. 3, 139–141 (2017).

    Google Scholar 

  18. B. Valentan, Z. Kadivnik, T. Brajlih, A. Anderson, and I. Drstvenšek: Processing poly(ether etherketone) on a 3D printer for thermoplastic modelling. Mater. Technol. 47, 715 (2013).

    Google Scholar 

  19. B. Mueller: Additive manufacturing technologies—Rapid prototyping to direct digital manufacturing. Assemb. Autom. 32, i (2013).

    Google Scholar 

  20. W.Z. Wu, P. Geng, J. Zhao, Y. Zhang, D.W. Rosen, and H.B. Zhang: Manufacture and thermal deformation analysis of semicrystalline polymer polyether ether ketone by 3D printing. Mater. Res. Innovations 18, S5 (2015).

    Google Scholar 

  21. M. Zalaznik, M. Kalin, and S. Novak: Influence of the processing temperature on the tribological and mechanical properties of poly-ether-ether-ketone (PEEK) polymer. Tribol. Int. 94, 92 (2016).

    Article  CAS  Google Scholar 

  22. A.C.D.O. Gomes, B.G. Soares, M.G. Oliveira, J.C. Machado, D. Windmöller, and C.M. Paranhos: Characterization of crystalline structure and free volume of polyamide 6/nitrile rubber elastomer thermoplastic vulcanizates: Effect of the processing additives. J. Appl. Polym. Sci. 134, 45576 (2017).

    Article  Google Scholar 

  23. P. Cebe and S.D. Hong: Crystallization behaviour of poly(ether-ether-ketone). Polymer 27, 1183 (1986).

    Article  CAS  Google Scholar 

  24. A. Kurapatti Ravi: A Study on an In-process Laser Localized Pre-deposition Heating Approach to Reducing FDM Part Anisotropy (Arizona State University, Tempe, Arizona, 2016).

    Google Scholar 

  25. V. Kishore, C. Ajinjeru, A. Nycz, B. Post, J. Lindahl, V. Kunc, and C. Duty: Infrared preheating to improve interlayer strength of big area additive manufacturing (BAAM) components. Addit. Manuf. 14, 7–12 (2016).

    Google Scholar 

  26. Q. Sun, G.M. Rizvi, C.T. Bellehumeur, and P. Gu: Effect of processing conditions on the bonding quality of FDM polymer filaments. Rapid Prototyp. J. 14, 72 (2008).

    Article  Google Scholar 

  27. L.C. Magalhães, N. Volpato, and M.A. Luersen: Evaluation of stiffness and strength in fused deposition sandwich specimens. J. Braz. Soc. Mech. Sci. Eng. 36, 449 (2014).

    Article  Google Scholar 

  28. D.J. Blundell and B.N. Osborn: The morphology of poly(aryl-ether-ether-ketone). Polymer 24, 953 (1983).

    Article  CAS  Google Scholar 

  29. R.A. Chivers, D.R. Moore, R.A. Chivers, and D.R. Moore: The effect of molecular weight and crystallinity on the mechanical properties of injection moulded poly(aryl-ether-ether-ketone) resin. Polymer 35, 110 (1994).

    Article  CAS  Google Scholar 

  30. D.J. Jaekel, D.W. Macdonald, and S.M. Kurtz: Characterization of PEEK biomaterials using the small punch test. J. Mech. Behav. Biomed. Mater. 4, 1275 (2011).

    Article  CAS  Google Scholar 

  31. S.H. Ahn, M. Montero, O. Dan, S. Roundy, and P.K. Wright: Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp. J. 8, 248 (2016).

    Article  Google Scholar 

  32. C. Ziemian, M. Sharma, and S. Ziemian: Anisotropic mechanical properties of ABS parts fabricated by fused deposition modelling. In Mechanical Engineering (InTech, London, United Kingdom, 2012), pp. 16836–16850.

    Google Scholar 

  33. S.C. Partain: Fused deposition modeling with localized pre-deposition heating using forced air. Master Thesis, College of Engineering, Montana State University-Bozeman (Bozeman, Montana, 2007).

  34. R. Anitha, S. Arunachalam, and P. Radhakrishnan: Critical parameters influencing the quality of prototypes in fused deposition modelling. J. Mater. Process. Technol. 118, 385 (2001).

    Article  Google Scholar 

  35. K. Fujihara, Z.M. Huang, S. Ramakrishna, and H. Hamada: Influence of processing conditions on bending property of continuous carbon fiber reinforced PEEK composites. Compos. Sci. Technol. 64, 2525 (2004).

    Article  CAS  Google Scholar 

  36. W.J.B. Grouve, L.L. Warnet, B. Rietman, H.A. Visser, and R. Akkerman: Optimization of the tape placement process parameters for carbon–PPS composites. Composites, Part A 50, 44 (2013).

    Article  CAS  Google Scholar 

  37. W.J.B. Grouve, G.V. Poel, L.L. Warnet, and R. Akkerman: On crystallisation and fracture toughness of poly(phenylene sulphide) under tape placement conditions. Plast., Rubber Compos. 42, 282 (2013).

    Article  CAS  Google Scholar 

  38. W.J.B. Grouve, L. Warnet, R. Akkerman, S. Wijskamp, and J.S.M. Kok: Weld strength assessment for tape placement. Int. J. Material Form. 3, 707 (2010).

    Article  Google Scholar 

  39. P. Parandoush, L. Tucker, C. Zhou, and D. Lin: Laser assisted additive manufacturing of continuous fiber reinforced thermoplastic composites. Mater. Des. 131, 186–195 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (No. 51575430) and National Key Research and Development Program of China (Nos. 2017YFB1103401 and 2016YFB1100902).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyong Tian.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Tian, X., Zhu, W. et al. Controllable interlayer shear strength and crystallinity of PEEK components by laser-assisted material extrusion. Journal of Materials Research 33, 1632–1641 (2018). https://doi.org/10.1557/jmr.2018.131

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.131

Navigation