Skip to main content
Log in

Effect of potential voltages on key functional properties of transparent AZO thin films prepared by electrochemical deposition method for optoelectronic applications

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The electrochemical technique has been used to prepare aluminum-doped zinc oxide (AZO) films on FTO substrates using zinc nitrate and aluminum chloride precursor solution at 70 °C. The crystal structure, surface morphology, optical and electrical features of AZO films were examined at different potential voltages from −1.7 to −2.3 V in the initial solution. Structural studies of the deposited films were carried out through X-ray diffraction; the AZO films exhibited a polycrystalline nature with hexagonal structure, and crystals preferentially grew along the (002) orientation. The morphology of the deposited films was characterized by scanning electron microscopy (SEM), and the images showed that the spherical- and nanorod-shaped particles are uniformly distributed on the entire AZO film surface. The average size is found to be in the range of 45–70 nm by SEM and 28–32 nm by using the Scherrer’s rule. The EDS spectrum confirmed the chemical composition of Zn, O, Al, Sn, and F elements over the film surface. The optical properties were studied using a UV-visible spectrophotometer, and the deposited film showed the highest optical transmittance of ∼80% in the visible range for −1.7 V. The calculated energy gap of the AZO films decreases from 3.09 to 2.97 eV with increasing potential voltages. AZO thin films have been studied using photoluminescence to identify the film’s optical quality with respect to the wavelength range. The electrical properties were studied by the room temperature Hall effect system, and the observed low resistivity (ρ) is 1.58 × 10−2 (Ω cm) for the film deposited using a −2.1 V potential voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. A. Kamalianfar, S. Halim, and A.K. Zak: Synthesis of ZnO/Cu micro and nanostructures via a vapor phase transport method using different tube systems. Ceram. Int. 40, 3193 (2014).

    Article  CAS  Google Scholar 

  2. T-C. Li, C-J. Chung, C-F. Han, and J-F. Lin: Effects of inclination angle applied to a polyethylene terephalate substrate before the coating of Al-doped ZnO on film quality and mechanical and optical properties. Ceram. Int. 40, 6987 (2014).

    Article  CAS  Google Scholar 

  3. H. Bahadur, A. Srivastava, R. Sharma, and S. Chandra: Morphologies of sol–gel derived thin films of ZnO using different precursor materials and their nanostructures. Nanoscale Res. Lett. 2, 469 (2007).

    Article  CAS  Google Scholar 

  4. X. Han, K. Han, and M. Tao: Electrodeposition of group-IIIA doped ZnO as a transparent conductive oxide. ECS Trans. 25, 93 (2010).

    Article  CAS  Google Scholar 

  5. O. Lupan, V. Guérin, I. Tiginyanu, V. Ursaki, L. Chow, H. Heinrich, and T. Pauporté: Well-aligned arrays of vertically oriented ZnO nanowires electrodeposited on ITO-coated glass and their integration in dye sensitized solar cells. J. Photochem. Photobiol., A 211, 65 (2010).

    Article  CAS  Google Scholar 

  6. S.A. Ansari, S. Ansari, H. Foaud, and M.H. Cho: Facile and sustainable synthesis of carbon-doped ZnO nanostructures towards the superior visible light photocatalytic performance. New J. Chem. 41, 9314 (2017).

    Article  CAS  Google Scholar 

  7. A. Stadler: Transparent conducting oxides—An up-to-date overview. Materials 5, 661 (2012).

    Article  Google Scholar 

  8. M. Addonizio, A. Antonaia, G. Cantele, and C. Privato: Transport mechanisms of RF sputtered Al-doped ZnO films by H2 process gas dilution. Thin Solid Films 349, 93 (1999).

    Article  CAS  Google Scholar 

  9. A. Gâlcă, M. Secu, A. Vlad, and J. Pedarnig: Optical properties of zinc oxide thin films doped with aluminum and lithium. Thin Solid Films 518, 4603 (2010).

    Article  CAS  Google Scholar 

  10. W-H. Kim, W. Maeng, M-K. Kim, and H. Kim: Low pressure chemical vapor deposition of aluminum-doped zinc oxide for transparent conducting electrodes. J. Electrochem. Soc. 158, D495 (2011).

    Article  CAS  Google Scholar 

  11. D.J. Edison, W. Nirmala, K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, and S. AlFaify: Structural, optical and nonlinear optical studies of AZO thin film prepared by SILAR method for electro-optic applications. Phys. B 523, 31 (2017).

    Article  CAS  Google Scholar 

  12. K.D.A. Kumar, V. Ganesh, M. Shkir, S. AlFaify, and S. Valanarasu: Effect of different solvents on the key structural, optical and electronic properties of sol–gel dip coated AZO nanostructured thin films for optoelectronic applications. J. Mater. Sci.: Mater. Electron. 29, 887 (2018).

    Google Scholar 

  13. K. Mahmood and S.B. Park: Atmospheric pressure based electrostatic spray deposition of transparent conductive ZnO and Al-doped ZnO (AZO) thin films: Effects of Al doping and annealing treatment. Electron. Mater. Lett. 9, 161 (2013).

    Article  CAS  Google Scholar 

  14. K.D.A. Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, and S. AlFaify: Effect of solvents on sol–gel spin-coated nanostructured Al-doped ZnO thin films: A film for key optoelectronic applications. Appl. Phys. A 123, 801 (2017).

    Article  CAS  Google Scholar 

  15. G. Schmerber, A. Dinia, O. Baka, A. Azizi, and S. Velumani: Effect of Al concentrations on the electrodeposition and properties of transparent Al-doped ZnO thin films. J. Mater. Sci.: Mater. Electron. 25, 1761 (2014).

    Google Scholar 

  16. M. Kemell, F. Dartigues, M. Ritala, and M. Leskelä: Electrochemical preparation of in and Al doped ZnO thin films for CuInSe2 solar cells. Thin Solid Films 434, 20 (2003).

    Article  CAS  Google Scholar 

  17. J. Chen, J. Chen, D. Chen, Y. Zhou, W. Li, Y. Ren, and L. Hu: Electrochemical deposition of Al-doped ZnO transparent conducting nanowire arrays for thin-film solar cell electrodes. Mater. Lett. 117, 162 (2014).

    Article  CAS  Google Scholar 

  18. M. Khelladi, L. Mentar, A. Beniaiche, L. Makhloufi, and A. Azizi: A study on electrodeposited zinc oxide nanostructures. J. Mater. Sci.: Mater. Electron. 24, 153 (2013).

    CAS  Google Scholar 

  19. M. Thomas and J. Cui: Investigations of acceptor related photoluminescence from electrodeposited Ag-doped ZnO. J. Appl. Phys. 105, 093533 (2009).

    Article  CAS  Google Scholar 

  20. G-R. Li, Q. Bu, F-L. Zheng, C-Y. Su, and Y-X. Tong: Electrochemically controllable growth and tunable optical properties of Zn1−xCdxO alloy nanostructures. Cryst. Growth Des. 9, 1538 (2009).

    Article  CAS  Google Scholar 

  21. K.D.A. Kumar, S. Valanarasu, K. Jeyadheepan, H-S. Kim, and D. Vikraman: Evaluation of the physical, optical, and electrical properties of SnO2: F thin films prepared by nebulized spray pyrolysis for optoelectronics. J. Mater. Sci.: Mater. Electron. 29, 3648 (2018).

    CAS  Google Scholar 

  22. H. Chevva, S. Palla, and S. Sankaranarayanan: Characterization and properties evaluation of conducting Al-doped ZnO at low temperature by ECD method. Orient. J. Chem. 31, 1035 (2015).

    Article  CAS  Google Scholar 

  23. G.H.A. Therese and P.V. Kamath: Electrochemical synthesis of metal oxides and hydroxides. Chem. Mater. 12, 1195 (2000).

    Article  CAS  Google Scholar 

  24. R. Chaim, I. Zhitomirsky, L. Gal-Or, and H. Bestgen: Electrochemical Al2O3–ZrO2 composite coatings on non-oxide ceramic substrates. J. Mater. Sci. 32, 389 (1997).

    Article  CAS  Google Scholar 

  25. M. Izaki and T. Omi: Electrolyte optimization for cathodic growth of zinc oxide films. J. Electrochem. Soc. 143, L53 (1996).

    Article  CAS  Google Scholar 

  26. K.P. Misra, R. Shukla, A. Srivastava, and A. Srivastava: Blueshift in optical band gap in nanocrystalline Zn1−xCaxO films deposited by sol–gel method. Appl. Phys. Lett. 95, 031901 (2009).

    Article  CAS  Google Scholar 

  27. M. Shkir and S. AlFaify: Tailoring the structural, morphological, optical and dielectric properties of lead iodide through Nd3+ doping. Sci. Rep. 7, 16091 (2017).

    Article  CAS  Google Scholar 

  28. M. Shkir, V. Ganesh, S. AlFaify, I.S. Yahia, and H.Y. Zahran: Tailoring the linear and nonlinear optical properties of NiO thin films through Cr3+ doping. J. Mater. Sci.: Mater. Electron. 29, 6446 (2018).

    CAS  Google Scholar 

  29. R. Kasar, N. Deshpande, Y. Gudage, J. Vyas, and R. Sharma: Studies and correlation among the structural, optical and electrical parameters of spray-deposited tin oxide (SnO2) thin films with different substrate temperatures. Phys. B 403, 3724 (2008).

    Article  CAS  Google Scholar 

  30. R. Mariappan, V. Ponnuswamy, and P. Suresh: Effect of doping concentration on the structural and optical properties of pure and tin doped zinc oxide thin films by nebulizer spray pyrolysis (NSP) technique. Superlattices Microstruct. 52, 500 (2012).

    Article  CAS  Google Scholar 

  31. M. Shkir, S. AlFaify, I.S. Yahia, M.S. Hamdy, V. Ganesh, and H. Algarni: Facile hydrothermal synthesis and characterization of cesium-doped PbI2 nanostructures for optoelectronic, radiation detection and photocatalytic applications. J. Nanopart. Res. 19, 328 (2017).

    Article  CAS  Google Scholar 

  32. M. Shkir, M. Kilany, and I.S. Yahia: Facile microwave-assisted synthesis of tungsten-doped hydroxyapatite nanorods: A systematic structural, morphological, dielectric, radiation and microbial activity studies. Ceram. Int. 43, 14923 (2017).

    Article  CAS  Google Scholar 

  33. T. Mahalingam, V. Dhanasekaran, G. Ravi, S. Lee, J. Chu, and H-J. Lim: Effect of deposition potential on the physical properties of electrodeposited CuO thin films. J. Optoelectron. Adv. Mater. 12, 1327 (2010).

    CAS  Google Scholar 

  34. N. El-Kadry, A. Ashour, and S. Mahmoud: Structural dependence of dc electrical properties of physically deposited CdTe thin films. Thin Solid Films 269, 112 (1995).

    Article  CAS  Google Scholar 

  35. A. Bougrine, M. Addou, A. Kachouane, J. Bérnède, and M. Morsli: Effect of tin incorporation on physicochemical properties of ZnO films prepared by spray pyrolysis. Mater. Chem. Phys. 91, 247 (2005).

    Article  CAS  Google Scholar 

  36. A. Goktas, F. Aslan, and I.H. Mutlu: Annealing effect on the characteristics of La0.67Sr0.33MnO3 polycrystalline thin films produced by the sol–gel dip-coating process. J. Mater. Sci.: Mater. Electron. 23, 605 (2012).

    CAS  Google Scholar 

  37. C. Sabitha, K.D.A. Kumar, S. Valanarasu, A. Saranya, and I.H. Joe: Cu:ZnS and Al:ZnS thin films prepared on FTO substrate by nebulized spray pyrolysis technique. J. Mater. Sci.: Mater. Electron. 29, 4612 (2018).

    CAS  Google Scholar 

  38. J. Tauc, R. Grigorovici, and A. Vancu: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 15, 627 (1966).

    Article  CAS  Google Scholar 

  39. H. El-Zahed, A. El-Korashy, and M.A. Rahem: Effect of heat treatment on some of the optical parameters of Cu9Ge11Te80 films. Vacuum 68, 19 (2002).

    Article  CAS  Google Scholar 

  40. A. Dakhel: Bandgap narrowing in CdO doped with europium. Opt. Mater. 31, 691 (2009).

    Article  CAS  Google Scholar 

  41. M. Ravikumar, R. Chandramohan, K.D.A. Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, and S. AlFaify: Effect of Gd3+ doping on key structural, morphological, optical, and electrical properties of CdO thin films fabricated by spray pyrolysis using perfume atomizer. J. Sol–Gel Sci. Technol. 85, 31 (2018).

    Article  CAS  Google Scholar 

  42. M. Caglar, S. Ilican, and Y. Caglar: Influence of dopant concentration on the optical properties of ZnO:In films by sol–gel method. Thin Solid Films 517, 5023 (2009).

    Article  CAS  Google Scholar 

  43. T. Moss: Optical Process in Semiconductors (Butter Worths, London, 1959).

    Google Scholar 

  44. S. Saipriya, M. Sultan, and R. Singh: Effect of environment and heat treatment on the optical properties of RF-sputtered SnO2 thin films. Phys. B 406, 812 (2011).

    Article  CAS  Google Scholar 

  45. K. Usha, R. Sivakumar, and C. Sanjeeviraja: Optical constants and dispersion energy parameters of NiO thin films prepared by radio frequency magnetron sputtering technique. J. Appl. Phys. 114, 123501 (2013).

    Article  CAS  Google Scholar 

  46. S. Ramteke, M. Anis, M. Baig, and G. Muley: Influence of Cu2+ ion on structural, luminescence and dielectric properties of zinc thiourea chloride metal-organic complex crystal. Optik 154, 275 (2018).

    Article  CAS  Google Scholar 

  47. M. Anis, S. Ramteke, M. Shirsat, G. Muley, and M. Baig: Novel report on gamma-glycine crystal yielding high second harmonic generation efficiency. Opt. Mater. 72, 590 (2017).

    Article  CAS  Google Scholar 

  48. M. Shkir: Effect of titan yellow dye on morphological, structural, optical, and dielectric properties of zinc(tris) thiourea sulphate single crystals. J. Mater. Res. 31, 1046 (2016).

    Article  CAS  Google Scholar 

  49. M. Shkir, V. Ganesh, S. AlFaify, A. Black, E. Dieguez, and K.K. Maurya: Large size crystal growth, photoluminescence, crystal excellence, and hardness properties of in-doped cadmium zinc telluride. Cryst. Growth Des. 18, 2046 (2018).

    Article  CAS  Google Scholar 

  50. P. Sagar, P. Shishodia, R. Mehra, H. Okada, A. Wakahara, and A. Yoshida: Photoluminescence and absorption in sol–gel-derived ZnO films. J. Lumin. 126, 800 (2007).

    Article  CAS  Google Scholar 

  51. L. Ma, S. Ma, H. Chen, X. Ai, and X. Huang: Microstructures and optical properties of Cu-doped ZnO films prepared by radio frequency reactive magnetron sputtering. Appl. Surf. Sci. 257, 10036 (2011).

    Article  CAS  Google Scholar 

  52. R. Long, N.J. English, and D.A. Mooney: Electronic structures of N- and C-doped NiO from first-principles calculations. Phys. Lett. A 374, 1184 (2010).

    Article  CAS  Google Scholar 

  53. S.C. Lyu, Y. Zhang, H. Ruh, H-J. Lee, H-W. Shim, E-K. Suh, and C.J. Lee: Low temperature growth and photoluminescence of well-aligned zinc oxide nanowires. Chem. Phys. Lett. 363, 134 (2002).

    Article  CAS  Google Scholar 

  54. R. Mariappan, M. Ragavendar, and V. Ponnuswamy: Growth and characterization of chemical bath deposited Cd1−xZnxS thin films. J. Alloys Compd. 509, 7337 (2011).

    Article  CAS  Google Scholar 

  55. A. Mahroug, S. Boudjadar, S. Hamrit, and L. Guerbous: Structural, optical and photocurrent properties of undoped and Al-doped ZnO thin films deposited by sol–gel spin coating technique. Mater. Lett. 134, 248 (2014).

    Article  CAS  Google Scholar 

  56. K.D.A. Kumar, S. Valanarasu, V. Ganesh, M. Shkir, A. Kathalingam, and S. AlFaify: Effect of precursors on key opto-electrical properties of successive ion layer adsorption and reaction-prepared Al:ZnO thin films. J. Electron. Mater. 47, 1335 (2018).

    Article  CAS  Google Scholar 

  57. F.Z. Bedia, A. Bedia, N. Maloufi, M. Aillerie, F. Genty, and B. Benyoucef: Effect of tin doping on optical properties of nanostructured ZnO thin films grown by spray pyrolysis technique. J. Alloy. Comp. 616, 312 (2014).

    Article  CAS  Google Scholar 

  58. H-l. Shen, H. Zhang, L-f. Lu, F. Jiang, and Y. Chao: Preparation and properties of AZO thin films on different substrates. Prog. Nat. Sci.: Mater. Int. 20, 44 (2010).

    Article  Google Scholar 

  59. V. Anand, A. Sakthivelu, K.D.A. Kumar, S. Valanarasu, A. Kathalingam, V. Ganesh, M. Shkir, S. AlFaify, and I. Yahia: Rare earth Sm3+ co-doped AZO thin films for opto-electronic application prepared by spray pyrolysis. Ceram. Int. 44, 6730 (2018).

    Article  CAS  Google Scholar 

  60. F. Yakuphanoglu: Electrical conductivity, Seebeck coefficient and optical properties of SnO2 film deposited on ITO by dip coating. J. Alloy. Comp. 470, 55 (2009).

    Article  CAS  Google Scholar 

  61. G. Haacke: New figure of merit for transparent conductors. J. Appl. Phys. 47, 4086 (1976).

    Article  CAS  Google Scholar 

  62. A.C. Aragonès, A. Palacios-Padrós, F. Caballero-Briones, and F. Sanz: Study and improvement of aluminium doped ZnO thin films: Limits and advantages. Electrochim. Acta 109, 117 (2013).

    Article  CAS  Google Scholar 

  63. O. Baka, L. Mentar, M. Khelladi, and A. Azizi: Growth and properties of electrodeposited transparent Al-doped ZnO nanostructures. J. Korean Phys. Soc. 67, 2011 (2015).

    Article  CAS  Google Scholar 

  64. J. Wellings, A. Samantilleke, P. Warren, S. Heavens, and I. Dharmadasa: Comparison of electrodeposited and sputtered intrinsic and aluminium-doped zinc oxide thin films. Semicond. Sci. Technol. 23, 125003 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors wish to express their sincere thanks to the Department of Science and Technology, New Delhi, India, for their financial assistance for the work by the project number SB/FTP/PS-131/2013. Mohd. Shkir, V. Ganesh, and S. AlFaify extend their appreciation to the Deanship of Scientific Research at King Khalid University for funding this work through Research Groups Program under Grant No. R.G.P. 2/10/39.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohd. Shkir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, K.D.A., Valanarasu, S., Ganesh, V. et al. Effect of potential voltages on key functional properties of transparent AZO thin films prepared by electrochemical deposition method for optoelectronic applications. Journal of Materials Research 33, 1523–1533 (2018). https://doi.org/10.1557/jmr.2018.122

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.122

Navigation