Skip to main content

Advertisement

Log in

Urea treatment of nitrogen-doped carbon leads to enhanced performance for the oxygen reduction reaction

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Manufacturing of advanced functional materials should also rely on the green chemistry principles like utilization of natural renewable resources. Marine environment offers plenty of renewable raw materials like chitin and its derivative chitosan. The paper presents how urea treatment has influenced several textural, chemical, and electrocatalytic properties of N-doped activated carbons (N_ACs) obtained from chitosan and chitin. The materials were subjected to an activation procedure (with different activators) as well as nitrogenation by premixing the precursors with water solutions of urea. Raw and premixed precursors were carbonized in the temperature range of 700–800 °C. The urea treatment resulted in a spectacular increase in the nitrogen content by weight (up to 68%) and an improvement of the surface area (up to 42%) along with total/micro-/mezo-pore volume (up to 49%). Some urea-modified N_ACs were capable of reducing oxygen in an alkaline solution as effectively as a Pt-loaded carbon material. The highest number of electrons transferred to O2 molecule was found to be equal to 3.76 for a chitosan derived sample. This ability of chitosan and chitin derived N-rich activated carbons was studied by means of the method named rotating ring disc electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, N. Kodiweera, P.E. Stallworth, S. Greenbaum, and T.J. Bandosz: Effect of surface phosphorus functionalities of activated carbons containing oxygen and nitrogen on electrochemical capacitance. Carbon 47, 1576 (2009).

    Article  CAS  Google Scholar 

  2. C. Wang, L. Sun, Y. Zhou, P. Wan, X. Zhang, and J. Qiu: P/N co-doped microporous carbons from H3PO4-doped polyaniline by in situ activation for supercapacitors. Carbon 59, 537 (2013).

    Article  CAS  Google Scholar 

  3. Y.J. Kim, Y. Abe, T. Yanagiura, K.C. Park, M. Shimizu, T. Iwazaki, S. Nakagawa, M. Endo, and M.S. Dresselhaus: Easy preparation of nitrogen-enriched carbon materials from peptides of silk fibroins and their use to produce a high volumetric energy density in supercapacitors. Carbon 45, 2116 (2007).

    Article  CAS  Google Scholar 

  4. K. László, E. Tombácz, and K. Josepovits: Effect of activation on the surface chemistry of carbons from polymer precursors. Carbon 39, 1217 (2001).

    Article  Google Scholar 

  5. L. Li, E. Liu, J. Li, Y. Yang, H. Shen, Z. Huang, X. Xiang, and W. Li: A doped activated carbon prepared from polyaniline for high performance supercapacitors. J. Power Sources 195, 1516 (2010).

    Article  CAS  Google Scholar 

  6. Y. Deng, Y. Xie, K. Zou, and X. Ji: Review on recent advances in nitrogen-doped carbons: Preparations and applications in supercapacitors. J. Mater. Chem. A 4, 1144 (2016).

    Article  CAS  Google Scholar 

  7. M. Kodama, J. Yamashita, Y. Soneda, H. Hatori, and K. Kamegawa: Preparation and electrochemical characteristics of N-enriched carbon foam. Carbon 45, 1105 (2007).

    Article  CAS  Google Scholar 

  8. J. Klinik, B. Samojeden, T. Grzybek, W. Suprun, H. Papp, and R. Gläser: Nitrogen promoted activated carbons as DeNOx catalysts. 2. The influence of water on the catalytic performance. Catal. Today 176, 303 (2011).

    Article  CAS  Google Scholar 

  9. E. Fiset, T.E. Rufford, M. Seredych, T.J. Bandosz, and D. Hulicova-Jurcakova: Comparison of melamine resin and melamine network as precursors for carbon electrodes. Carbon 81, 239 (2015).

    Article  CAS  Google Scholar 

  10. C. Qin, X. Lu, G. Yin, Z. Jin, Q. Tan, and X. Bai: Study of activated nitrogen-enriched carbon and nitrogen-enriched carbon/carbon aerogel composite as cathode materials for supercapacitors. Mater. Chem. Phys. 126, 453 (2011).

    Article  CAS  Google Scholar 

  11. B. Xu, S. Hou, G. Cao, F. Wu, and Y. Yang: Sustainable nitrogen-doped porous carbon with high surface areas prepared from gelatin for supercapacitors. J. Mater. Chem. 22, 19088 (2012).

    Article  CAS  Google Scholar 

  12. B. Zhang, Z. Wen, S. Ci, S. Mao, J. Chen, and Z. He: Synthesizing nitrogen-doped activated carbon and probing its active sites for oxygen reduction reaction in microbial fuel cells. ACS Appl. Mater. Interfaces 6, 7464 (2014).

    Article  CAS  Google Scholar 

  13. K. Jurewicz, K. Babeł, A. Ziółkowski, and H. Wachowska: Capacitance behaviour of the ammoxidised coal. J. Phys. Chem. Solids 65, 269 (2004).

    Article  CAS  Google Scholar 

  14. G. Lota, B. Grzyb, H. Machnikowska, J. Machnikowski, and E. Frackowiak: Effect of nitrogen in carbon electrode on the supercapacitor performance. Chem. Phys. Lett. 404, 53 (2005).

    Article  CAS  Google Scholar 

  15. H. Wang, K. Wang, H. Song, H. Li, S. Ji, Z. Wang, S. Li, and R. Wang: N-doped porous carbon material made from fish-bones and its highly electrocatalytic performance in the oxygen reduction reaction. RSC Adv. 5, 48965 (2015).

    Article  CAS  Google Scholar 

  16. P. Nowicki and R. Pietrzak: Węgle aktywne wzbogacone w azot — otrzymywanie, włąsciwości I potencjalne zastosowania. In Adsorbenty i katalizatory, J. Ryczkowki, ed. (Uniwersytet Rzeszowski, Rzeszow, 2012); p. 129.

    Google Scholar 

  17. D. Hulicova-Jurcakova, M. Seredych, G.Q. Lu, and T.J. Bandosz: Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv. Funct. Mater. 19, 438 (2009).

    Article  CAS  Google Scholar 

  18. H. Peng, G. Ma, K. Sun, Z. Zhang, Q. Yang, and Z. Lei: Nitrogen-doped interconnected carbon nanosheets from pomelo mesocarps for high performance supercapacitors. Electrochim. Acta 190, 862 (2016).

    Article  CAS  Google Scholar 

  19. L. Wang and R.T. Yang: Hydrogen storage properties of N-doped microporous carbon. J. Phys. Chem. C 113, 21883 (2009).

    Article  CAS  Google Scholar 

  20. V.J. Watson, C. Nieto Delgado, and B.E. Logan: Improvement of activated carbons as oxygen reduction catalysts in neutral solutions by ammonia gas treatment and their performance in microbial fuel cells. J. Power Sources 242, 756 (2013).

    Article  CAS  Google Scholar 

  21. M. Ghasemi, S. Shahgaldi, M. Ismail, B.H. Kim, Z. Yaakob, and W.R. Wan Daud: Activated carbon nanofibers as an alternative cathode catalyst to platinum in a two-chamber microbial fuel cell. Int. J. Hydrogen Energy 36, 13746 (2011).

    Article  CAS  Google Scholar 

  22. X. Yang, W. Zou, Y. Su, Y. Zhu, H. Jiang, J. Shen, and C. Li: Activated nitrogen-doped carbon nanofibers with hierarchical pore as efficient oxygen reduction reaction catalyst for microbial fuel cells. J. Power Sources 266, 36 (2014).

    Article  CAS  Google Scholar 

  23. R. Czerw, M. Terrones, J.C. Charlier, X. Blase, B. Foley, R. Kamalakaran, N. Grobert, H. Terrones, D. Tekleab, P.M. Ajayan, W. Blau, M. Rühle, and D.L. Carroll: Identification of electron donor states in N-doped carbon nanotubes. Nano Lett. 1, 457 (2001).

    Article  CAS  Google Scholar 

  24. K. Gong, F. Du, Z. Xia, M. Durstock, and L. Dai: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760 (2009).

    Article  CAS  Google Scholar 

  25. G. Wu, N.H. Mack, W. Gao, S. Ma, R. Zhong, J. Han, J.K. Baldwin, and P. Zelenay: Nitrogen-doped graphene-rich catalysts derived from heteroatom polymers for oxygen reduction in nonaqueous lithium–O2 battery cathodes. ACS Nano 6, 9764 (2012).

    Article  CAS  Google Scholar 

  26. S. Wang , E. Iyyamperumal , A. Roy, Y. Xue, D. Yu, and L. Dai: Vertically aligned BCN nanotubes as efficient metal-free electrocatalysts for the oxygen reduction reaction: A synergetic effect by Co-doping with boron and nitrogen. Angew. Chem., Int. Ed. 50, 11756 (2011).

    Article  CAS  Google Scholar 

  27. J. Shui, M. Wang, F. Du, and L. Dai: N-doped carbon nanomaterials are durable catalysts for oxygen reduction reaction in acidic fuel cells. Sci. Adv. 1, e1400129 (2015).

    Article  CAS  Google Scholar 

  28. Q. Wei, X. Tong, G. Zhang, J. Qiao, Q. Gong, and S. Sun: Nitrogen-doped carbon nanotube and graphene materials for oxygen reduction reactions. Catalysis 5, 1574 (2015).

    CAS  Google Scholar 

  29. L. Feng, Y. Chen, and L. Chen: Easy-to-operate and low-temperature synthesis of gram-scale nitrogen-doped graphene and its application as cathode catalyst in microbial fuel cells. ACS Nano 5, 9611 (2011).

    Article  CAS  Google Scholar 

  30. S. Wang, L. Zhang, Z. Xia, A. Roy, D.W. Chang, J-B. Baek, and L. Dai: BCN graphene as efficient metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem., Int. Ed. 51, 4209 (2012).

    Article  CAS  Google Scholar 

  31. Y. Hu, H. Liu, Q. Ke, and J. Wang: Effects of nitrogen doping on supercapacitor performance of a mesoporous carbon electrode produced by a hydrothermal soft-templating process. J. Mater. Chem. A 2, 11753 (2014).

    Article  CAS  Google Scholar 

  32. F.L. Braghiroli, V. Fierro, M.T. Izquierdo, J. Parmentier, A. Pizzi, L. Delmotte, P. Fioux, and A. Celzard: High surface—Highly N-doped carbons from hydrothermally treated tannin. Ind. Crop. Prod. 66, 282 (2015).

    Article  CAS  Google Scholar 

  33. J. Duan , H. Fan, and W. Shen: Nitrogen-doped carbon materials prepared from polyurethane foams. ChemistrySelect 1, 3204 (2016).

    Article  CAS  Google Scholar 

  34. W. Li, D. Chen, Z. Li, Y. Shi, Y. Wan, G. Wang, Z. Jiang, and D. Zhao: Nitrogen-containing carbon spheres with very large uniform mesopores: The superior electrode materials for EDLC in organic electrolyte. Carbon 45, 1757 (2007).

    Article  CAS  Google Scholar 

  35. D. Hulicova, M. Kodama, and H. Hatori: Electrochemical performance of nitrogen-enriched carbons in aqueous and non-aqueous supercapacitors. Chem. Mater. 18, 2318 (2006).

    Article  CAS  Google Scholar 

  36. E. Pollak, G. Salitra, A. Soffer, and D. Aurbach: On the reaction of oxygen with nitrogen-containing and nitrogen-free carbons. Carbon 44, 3302 (2006).

    Article  CAS  Google Scholar 

  37. H.M. Jeong, J.W. Lee, W.H. Shin, Y.J. Choi, H.J. Shin, J.K. Kang, and J.W. Choi: Nitrogen-doped graphene for high-performance ultracapacitors and the importance of nitrogen-doped sites at basal planes. Nano Lett. 11, 2472 (2011).

    Article  CAS  Google Scholar 

  38. Y. Wang, Y. Shao, D.W. Matson, J. Li, and Y. Lin: Nitrogen-doped graphene and its application in electrochemical bisensing. ACS Nano 4, 1790 (2010).

    Article  CAS  Google Scholar 

  39. A. Ben Belgacem, I. Hinkov, S.B. Yahia, O. Brinza, and S. Farhat: Arc discharge boron nitrogen doping of carbon nanotubes. Mater. Today Commun. 8, 183 (2016).

    Article  CAS  Google Scholar 

  40. M. Kruk, K.M. Kohlhaas, B. Dufour, E.B. Celer, M. Jaroniec, K. Matyjaszewski, R.S. Ruoff, and T. Kowalewski: Partially graphitic, high-surface-area mesoporous carbons from polyacrylonitrile templated by ordered and disordered mesoporous silicas. Microporous Mesoporous Mater. 102, 178 (2007).

    Article  CAS  Google Scholar 

  41. A. Lu, A. Kiefer, W. Schmidt, and F. Schüth: Synthesis of polyacrylonitrile-based ordered mesoporous carbon with tunable pore structures. Chem. Mater. 16, 100 (2004).

    Article  CAS  Google Scholar 

  42. J. Machnikowski, B. Grzyb, H. Machnikowska, and J.V. Weber: Surface chemistry of porous carbons from N-polymers and their blends with pitch. Microporous Mesoporous Mater. 82, 113 (2005).

    Article  CAS  Google Scholar 

  43. E. Raymundo-Piñero, D. Cazorla-Amorós, and A. Linares-Solano: The role of different nitrogen functional groups on the removal of SO2 from flue gases by N-doped activated carbon powders and fibres. Carbon 41, 1925 (2003).

    Article  CAS  Google Scholar 

  44. K. Cong, M. Radtke, S. Stumpf, B. Schröter, D.G. McMillan, M. Rettenmayr, and A. Ignaszak: Electrochemical stability of the polymer-derived nitrogen-doped carbon: An elusive goal? Mater. Renew. Sustain. Energy 4, 1 (2015).

    Article  Google Scholar 

  45. M. Trchová, E.N. Konyushenko, J. Stejskal, J. Kovářová, and G. Ćirić-Marjanović: The conversion of polyaniline nanotubes to nitrogen-containing carbon nanotubes and their comparison with multi-walled carbon nanotubes. Polym. Degrad. Stab. 94, 929 (2009).

    Article  CAS  Google Scholar 

  46. X. Yang, D. Wu, X. Chen, and R. Fu: Nitrogen-enriched nanocarbons with a 3-d continuous mesopore structure from polyacrylonitrile for supercapacitor application. J. Phys. Chem. C 114, 8581 (2010).

    Article  CAS  Google Scholar 

  47. A.B. Fuertes and T.A. Centeno: Mesoporous carbons with graphitic structures fabricated by using porous silica materials as templates and iron-impregnated polypyrrole as precursor. J. Mater. Chem. 15, 1079 (2005).

    Article  CAS  Google Scholar 

  48. C-M. Yang, C. Weidenthaler, B. Spliethoff, M. Mayanna, and F. Schüth: Facile template synthesis of ordered mesoporous carbon with polypyrrole as carbon precursor. Chem. Mater. 17, 355 (2005).

    Article  CAS  Google Scholar 

  49. G. Nam, J. Park, S.T. Kim, D-b. Shin, N. Park, Y. Kim, J-S. Lee, and J. Cho: Metal-free ketjenblack incorporated nitrogen-doped carbon sheets derived from gelatin as oxygen reduction catalysts. Nano Lett. 14, 1870 (2014).

    Article  CAS  Google Scholar 

  50. Z. Schnepp, Y. Zhang, M.J. Hollamby, B.R. Pauw, M. Tanaka, Y. Matsushita, and Y. Sakka: Doped-carbon electrocatalysts with trimodal porosity from a homogeneous polypeptide gel. J. Mater. Chem. A 1, 13576 (2013).

    Article  CAS  Google Scholar 

  51. D-W. Lee, M-H. Jin, D. Oh, S-W. Lee, and J-S. Park: Straightforward synthesis of hierarchically porous nitrogen-doped carbon via pyrolysis of chitosan/urea/KOH mixtures and its application as a support for formic acid dehydrogenation catalysts. ACS Sustainable Chem. Eng. 5, 9935 (2017).

    Article  CAS  Google Scholar 

  52. B. Wang, S. Li, X. Wu, J. Liu, and J. Chen: Biomass chitin-derived honeycomb-like nitrogen-doped carbon/graphene nanosheet networks for applications in efficient oxygen reduction and robust lithium storage. J. Mater. Chem. A 4, 11789 (2016).

    Article  CAS  Google Scholar 

  53. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, and K.S.W. Sing: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051–1069 (2015).

    Article  CAS  Google Scholar 

  54. Z.H. Sheng, L. Shao, J.J. Chen, W.J. Bao, F.B. Wang, and X.H. Xia: Catalyst-free synthesis of nitrogen-doped graphene via thermal annealing graphite oxide with melamine and its excellent electrocatalysis. ACS Nano 5, 4350 (2011).

    Article  CAS  Google Scholar 

  55. L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, and R.S. Ruoff: Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5, 7936 (2012).

    Article  CAS  Google Scholar 

  56. N. Tachibana, S. Ikeda, Y. Yukawa, and M. Kawaguchi: Highly porous nitrogen-doped carbon nanoparticles synthesized via simple thermal treatment and their electrocatalytic activity for oxygen reduction reaction. Carbon 115, 515 (2017).

    Article  CAS  Google Scholar 

  57. X. Wang, X. Li, L. Zhang, Y. Yoon, P.K. Weber, H. Wang, J. Guo, and H. Dai: N-doping of graphene through electrothermal reactions with ammonia. Science 324, 768 (2009).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was carried out as a result of the research Project No. 2014/15/N/ST8/03399 financed by the National Science Center (Poland).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Ilnicka.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilnicka, A., Lukaszewicz, J.P., Shimanoe, K. et al. Urea treatment of nitrogen-doped carbon leads to enhanced performance for the oxygen reduction reaction. Journal of Materials Research 33, 1612–1624 (2018). https://doi.org/10.1557/jmr.2018.116

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.116

Navigation