Skip to main content
Log in

Directionally solidified Al2O3/ZrO2 eutectic ceramic prepared with induction heating zone melting

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To prepare high quality large solidified Al2O3/ZrO2 eutectic ceramic, the preparation processing of the presintered ceramic as a feed rod was investigated via experiments; some parameters of the induction heating zone process were optimized via numerical modeling; an Al2O3/ZrO2 eutectic ceramic rod with a diameter 10 mm was prepared. The results show that increasing the sintering temperature could increase the presintered ceramic’s bulk density, while increasing sintering time had little effect. And the bulk density increased first and then decreased with the molding pressure increase. And the saucer coil obtained a higher temperature gradient than the tubbiness coil for a fixed crucible wall maximum temperature, and the coil turn’s increase could increase the melting zone height in the induction zone melting process. In the directionally solidified Al2O3/ZrO2 eutectic ceramics, Al2O3 phase is the matrix phase, and the ZrO2 phase embedded in the Al2O3 phase mostly with the rod shape, and little with lamellar. The hardness of directionally solidified eutectic ceramics reaches 16.17 GPa and the fracture toughness reaches 4.76 MPa m1/2, which are 1.7 times and 1.5 times of the presintered eutectic ceramic, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. M. Attarian and A.K. Taheri: Microstructural evolution in creep aged of directionally solidified heat resistant HP-Nb steel alloyed with tungsten and nitrogen. Mater. Sci. Eng., A 659, 104 (2016).

    Article  CAS  Google Scholar 

  2. Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu, and Y. Kohtoku: A ductile ceramic eutectic composite with high strength at 1873 K. Nature 389, 49 (1997).

    Article  CAS  Google Scholar 

  3. Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu, and Y. Kohtoku: High temperature strength and thermal stability of a unidirectionally solidified eutectic composite. J. Mater. Sci. 33, 1217 (1998).

    Article  CAS  Google Scholar 

  4. Y. Waku, N. Nakagawa, T. Wakamoto, H. Ohtsubo, K. Shimizu, and Y. Kohtoku: The creep and thermal stability characteristics of a unidirectionally solidified eutectic composite. J. Mater. Sci. 33, 4943 (1998).

    Article  CAS  Google Scholar 

  5. Y. Waku, S. Sakata, A. Mitani, K. Shimizu, and M. Hasebe: Temperature dependence of flexural strength and microstructure of Al2O3/Y3Al5O12/ZrO2 ternary melt growth composites. J. Mater. Sci. 37, 2975 (2002).

    Article  CAS  Google Scholar 

  6. W. Ma, J. Zhang, H. Su, Q. Ren, B. Yao, and L. Liu: Microstructure transformation from irregular eutectic to complex regular eutectic in directionally solidified Al2O3/GdAlO3/ZrO2 ceramics by laser floating zone melting. J. Eur. Ceram. Soc. 36, 1447 (2015).

    Article  Google Scholar 

  7. O. Benamara, M. Cherif, T. Duffar, and K. Lebbou: Microstructure and crystallography of Al2O3–Y3Al5O12–ZrO2, ternary eutectic oxide grown by the micro pulling down technique. J. Cryst. Growth 429, 27 (2015).

    Article  CAS  Google Scholar 

  8. G. Liu, Q. Wang, J. Li, Y. Chen, and B. He: Preparation of Al2O3–ZrO2–SiO2, ceramic composites by high-gravity combustion synthesis. Int. J. Refract. Met. Hard Mater. 41, 622 (2013).

    Article  Google Scholar 

  9. L. Mei, P. Mai, J. Li, and K. Chen: Fabrication of nanostructure Al2O3/ZrO2, (Y2O3) eutectic by combustion synthesis melt-casting under ultra-high gravity. Mater. Lett. 64, 68 (2010).

    Article  CAS  Google Scholar 

  10. H. Fu, J.L. Guo, and L. Liu: Directional Solidification and Processing of Advanced Materials (Science Press, Beijing, 2008).

    Google Scholar 

  11. B. Lu and Y. Zhang: Densification behavior and microstructure evolution of hot-pressed SiC–SiBCN ceramics. Ceram. Int. 41, 8541 (2015).

    Article  CAS  Google Scholar 

  12. F. Booth, L. Garrido, E. Aglietti, A. Silva, P. Pena, and C. Baudín: CaZrO3–MgO structural ceramics obtained by reaction sintering of dolomite–zirconia mixtures. J. Eur. Ceram. Soc. 36, 2611 (2016).

    Article  CAS  Google Scholar 

  13. H. Yang, X. Zhou, J. Yu, H. Wang, and Z. Huang: Effect of microwave sintering time on the flexural properties of the SiC/SiC composites. Ceram. Int. 41, 14692 (2015).

    Article  CAS  Google Scholar 

  14. D.A. Jerebtsov, G.G. Mikhailov, and S.V. Sverdina: Phase diagram of the system: Al2O3–ZrO2. Ceram. Int. 26, 821 (2000).

    Article  CAS  Google Scholar 

  15. P. Wang, H.B. Sun, J.H. Bai, and J.C. Liu: Investigation on solid-liquid interface morphology during the A12O3/MgA12O4 eutectic ceramics solidification. J. Synth. Cryst. 40, 1252 (2011).

    CAS  Google Scholar 

  16. Y. Mizutani, H. Yasuda, I. Ohnaka, N. Maeda, and Y. Waku: Coupled growth of unidirectionally solidified Al2O3-YAG eutectic ceramics. J. Cryst. Growth 244, 384 (2002).

    Article  CAS  Google Scholar 

  17. C. Herring: Effect of change of scale on sintering phenomena. J. Appl. Phys. 21, 301 (1950).

    Article  CAS  Google Scholar 

  18. A.G. Balogh: Irradiation induced defect formation and phase transition in nanostructured ZrO2. Nucl. Instrum. Methods Phys. Res., Sect. B 282, 48 (2012).

    Article  CAS  Google Scholar 

  19. M.H. Berger and A. Sayir: Directional solidification of Al2O3–Al2TiO5 system. J. Eur. Ceram. Soc. 28, 2411 (2008).

    Article  CAS  Google Scholar 

  20. M.C. Mesa, S. Serrano-Zabaleta, P.B. Oliete, and A. Larrea: Microstructural stability and orientation relationships of directionally solidified Al2O3–Er3Al5O12–ZrO2, eutectic ceramics up to 1600 °C. J. Eur. Ceram. Soc. 34, 2071 (2014).

    Article  CAS  Google Scholar 

  21. O. Khasanov, V. Osipov, E. Dvilis, A. Kachaev, A. Khasanov, and V. Shitov: Nanoscaled grain boundaries and pores, microstructure and mechanical properties of translucent Yb:[LuxY(1−x)O3] ceramics. J. Alloys Compd. 509, S338–S342 (2011).

    Article  CAS  Google Scholar 

  22. A. Ludwig and S. Leibbrandt: Generalized ‘Jackson–Hunt’ model for eutectic solidification at low and large Peclet numbers and any binary eutectic phase diagram. Mater. Sci. Eng., A S375–377, 540 (2004).

    Article  Google Scholar 

  23. S. Akamatsu, S. Bottin-Rousseau, and G. Faivre: Determination of the Jackson–Hunt constants of the In–In2Bi eutectic alloy based on in situ observation of its solidification dynamics. Acta Mater. 59, 7586 (2011).

    Article  CAS  Google Scholar 

  24. C. Stöcker and L. Ratke: A new ‘Jackson–Hunt’ model for monotectic composite growth. J. Cryst. Growth 203, 582 (1999).

    Article  Google Scholar 

  25. I. Barin and G. Platzki: Thermochemical Data of Pure Substances (VCH, Weinheim, 1989).

    Google Scholar 

  26. M. Gervais, S. Floch, J.C. Rifflet, J. Coutures, and J.P. Coutures: Effect of the melt temperature on the solidification process of liquid garnets Ln3Al5O12 (Ln = Dy, Y, and Lu). J. Am. Ceram. Soc. 75, 3166 (1992).

    Article  CAS  Google Scholar 

  27. Y. Zheng, H. Li, T. Zhou, J. Zhao, and P. Yang: Microstructure and mechanical properties of Al2O3/ZrO2 eutectic ceramic composites prepared by explosion synthesis. J. Alloys Compd. 551, 475 (2013).

    Article  CAS  Google Scholar 

  28. G.R. Anstis, P. Chantikul, B.R. Lawn, and D.B. Marshall: A critical evaluation of indentation techniques for measuring fracture toughness: I, direct crack measurements. J. Am. Ceram. Soc. 64, 533 (1981).

    Article  CAS  Google Scholar 

  29. Y.F. Deng, J. Zhang, H.J. Su, K. Song, L. Liu, and H.Z. Fu: Microstructure and fracture toughness of A12O3/Er3A15O12 eutectic ceramic prepared by laser zone remelting. J. Inorg. Mater. 26, 841 (2011).

    Article  CAS  Google Scholar 

  30. A. Sayir and S.C. Farmer: The effect of the microstructure on mechanical properties of directionally solidified Al2O3/ZrO2(Y2O3) eutectic. Acta Mater. 48, 4691 (2000).

    Article  CAS  Google Scholar 

  31. W. Wang, Z. Liang, X. Han, J. Chen, C. Xue, and H. Zhao: Mechanical and thermodynamic properties of ZrO2, under high-pressure phase transition: A first-principles study. J. Alloys Compd. 622, 504 (2015).

    Article  CAS  Google Scholar 

  32. S.Y. Zhai, J.C. Liu, and J. Wang: Microstructure of the directionally solidified ternary eutectic ceramic Al2O3/MgAl2O4/ZrO2. Ceram. Int. 42, 8079 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was financially supported by the National Natural Science Foundation of China (NSFC, Grant No. 51172161) and Natural Science Foundation of Shandong Province (Grant No. ZR2012EMM018).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juncheng Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, W., Liu, J. & Song, C. Directionally solidified Al2O3/ZrO2 eutectic ceramic prepared with induction heating zone melting. Journal of Materials Research 33, 1681–1689 (2018). https://doi.org/10.1557/jmr.2018.113

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.113

Navigation