Skip to main content

Advertisement

Log in

Room-temperature synthesis of ZnO@GO nanocomposites as anode for lithium-ion batteries

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this study, a facile room-temperature solution method is developed for the preparation of zinc oxide@graphene oxide (ZnO@GO) nanocomposites. Unlike the general process to obtain crystallized materials by heating, the room temperature we used can generate fine ZnO@GO nanocomposites with ultra-small ZnO nanocrystal (∼8 nm) and high weight content (∼84%). The obtained ZnO@GO nanocomposite was thoroughly characterized by various physicochemical techniques such as scanning electron microscopy, high-resolution transmission electron microscopy, X-ray diffraction, Raman spectroscopy, and X-ray photoelectron spectroscopy, indicating well-dispersed ZnO on the GO layer and strong interaction between the each other. As an anode material for lithium-ion batteries, ZnO@GO exhibits high specific reversible capacity and excellent cycling performance, which can be ascribed to the role of GO in preventing the agglomeration of the ZnO nanoparticles by creating the decorated nanoscale composite during the electrochemical process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. A.S. Arico, P. Bruce, B. Scrosati, J-M. Tarascon, and W. van Schalkwijk: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366 (2005).

    Article  CAS  Google Scholar 

  2. S. Goriparti, E. Miele, F. De Angelis, E. Di Fabrizio, R. Proietti Zaccaria, and C. Capiglia: Review on recent progress of nanostructured anode materials for Li-ion batteries. J. Power Sources 257, 421 (2014).

    Article  CAS  Google Scholar 

  3. Q. Xiang, J. Yu, and M. Jaroniec: Graphene-based semiconductor photocatalysts. Chem. Soc. Rev. 41, 782 (2012).

    Article  CAS  Google Scholar 

  4. Q. Zhang, C. Tian, A. Wu, T. Tan, L. Sun, L. Wang, and H. Fu: A facile one-pot route for the controllable growth of small sized and well-dispersed ZnO particles on GO-derived graphene. J. Mater. Chem. 22, 11778 (2012).

    Article  CAS  Google Scholar 

  5. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, and H. Dai: Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780 (2011).

    Article  CAS  Google Scholar 

  6. Y. Chen, X. Zang, J. Gu, S. Zhu, H. Su, D. Zhang, X. Hu, Q. Liu, W. Zhang, and D. Liu: ZnO single butterfly wing scales: Synthesis and spatial optical anisotropy. J. Mater. Chem. 21, 6140 (2011).

    Article  CAS  Google Scholar 

  7. D.I. Son, B.W. Kwon, D.H. Park, W-S. Seo, Y. Yi, B. Angadi, C-L. Lee, and W.K. Choi: Emissive ZnO–graphene quantum dots for white-light-emitting diodes. Nat. Nanotechnol. 7, 465 (2012).

    Article  CAS  Google Scholar 

  8. B. Zhang, Z. Wang, B. Huang, X. Zhang, X. Qin, H. Li, Y. Dai, and Y. Li: Anisotropic photoelectrochemical (PEC) performances of ZnO single-crystalline photoanode: Effect of internal electrostatic fields on the separation of photogenerated charge carriers during PEC water splitting. Chem. Mater. 28, 6613 (2016).

    Article  CAS  Google Scholar 

  9. J. Wang, T. Tsuzuki, B. Tang, X. Hou, L. Sun, and X. Wang: Reduced graphene oxide/ZnO composite: Reusable adsorbent for pollutant management. ACS Appl. Mater. Interfaces 4, 3084 (2012).

    Article  CAS  Google Scholar 

  10. K. Qi, B. Cheng, J. Yu, and W. Ho: Review on the improvement of the photocatalytic and antibacterial activities of ZnO. J. Alloys Compd. 727, 792 (2017).

    Article  CAS  Google Scholar 

  11. X. Liu, Y. Sun, M. Yu, Y. Yin, B. Yang, W. Cao, and M.N.R. Ashfold: Incident fluence dependent morphologies, photoluminescence and optical oxygen sensing properties of ZnO nanorods grown by pulsed laser deposition. J. Mater. Chem. C 3, 2557 (2015).

    Article  CAS  Google Scholar 

  12. T. Sin Tee, T. Chun Hui, C. Wu Yi, Y. Chi Chin, A.A. Umar, G. Riski Titian, L. Hock Beng, L. Kok Sing, M. Yahaya, and M.M. Salleh: Microwave-assisted hydrolysis preparation of highly crystalline ZnO nanorod array for room temperature photoluminescence-based CO gas sensor. Sens. Actuators, B 227, 304 (2016).

    Article  CAS  Google Scholar 

  13. X.H. Huang, X.H. Xia, Y.F. Yuan, and F. Zhou: Porous ZnO nanosheets grown on copper substrates as anodes for lithium ion batteries. Electrochim. Acta 56, 4960 (2011).

    Article  CAS  Google Scholar 

  14. M. Ahmad, S. Yingying, A. Nisar, H. Sun, W. Shen, M. Wei, and J. Zhu: Synthesis of hierarchical flower-like ZnO nanostructures and their functionalization by Au nanoparticles for improved photocatalytic and high performance Li-ion battery anodes. J. Mater. Chem. 21, 7723 (2011).

    Article  CAS  Google Scholar 

  15. R. Hong, T. Pan, J. Qian, and H. Li: Synthesis and surface modification of ZnO nanoparticles. Chem. Eng. J. 119, 71 (2006).

    Article  CAS  Google Scholar 

  16. C.B. Ong, L.Y. Ng, and A.W. Mohammad: A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications. Renew. Sustain. Energy Rev. 81, 536 (2018).

    Article  CAS  Google Scholar 

  17. S. Eigler and A. Hirsch: Chemistry with graphene and graphene oxide—Challenges for synthetic chemists. Angew. Chem., Int. Ed. 53, 7720 (2014).

    Article  CAS  Google Scholar 

  18. D.R. Dreyer, S. Park, C.W. Bielawski, and R.S. Ruoff: The chemistry of graphene oxide. Chem. Soc. Rev. 39, 228 (2010).

    Article  CAS  Google Scholar 

  19. G. Williams and P.V. Kamat: Graphene–semiconductor nanocomposites: Excited-state interactions between ZnO nanoparticles and graphene oxide. Langmuir 25, 13869 (2009).

    Article  CAS  Google Scholar 

  20. O. Akhavan: Graphene nanomesh by ZnO nanorod photocatalysts. ACS Nano 4, 4174 (2010).

    Article  CAS  Google Scholar 

  21. Q-P. Luo, X-Y. Yu, B-X. Lei, H-Y. Chen, D-B. Kuang, and C-Y. Su: Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J. Mater. Chem. C 116, 8111 (2012).

    CAS  Google Scholar 

  22. Y-L. Chen, Z-A. Hu, Y-Q. Chang, H-W. Wang, Z-Y. Zhang, Y-Y. Yang, and H-Y. Wu: Zinc oxide/reduced graphene oxide composites and electrochemical capacitance enhanced by homogeneous incorporation of reduced graphene oxide sheets in zinc oxide matrix. J. Mater. Chem. C 115, 2563 (2011).

    CAS  Google Scholar 

  23. S. Li, Y. Xiao, X. Wang, and M. Cao: A ZnO–graphene hybrid with remarkably enhanced lithium storage capability. Phys. Chem. Chem. Phys. 16, 25846 (2014).

    Article  CAS  Google Scholar 

  24. H. Ren, J. Sun, R. Yu, M. Yang, L. Gu, P. Liu, H. Zhao, D. Kisailus, and D. Wang: Controllable synthesis of mesostructures from TiO2 hollow to porous nanospheres with superior rate performance for lithium ion batteries. Chem. Sci. 7, 793 (2016).

    Article  CAS  Google Scholar 

  25. C. Kim, J.W. Kim, H. Kim, D.H. Kim, C. Choi, Y.S. Jung, and J. Park: Graphene oxide assisted synthesis of self-assembled zinc oxide for lithium-ion battery anode. Chem. Mater. 28, 8498 (2016).

    Article  CAS  Google Scholar 

  26. Q. Huang, D. Zeng, H. Li, and C. Xie: Room temperature formaldehyde sensors with enhanced performance, fast response and recovery based on zinc oxide quantum dots/graphene nanocomposites. Nanoscale 4, 5651 (2012).

    Article  CAS  Google Scholar 

  27. X. Dong, Y. Cao, J. Wang, M.B. Chan-Park, L. Wang, W. Huang, and P. Chen: Hybrid structure of zinc oxide nanorods and three dimensional graphene foam for supercapacitor and electrochemical sensor applications. RSC Adv. 2, 4364 (2012).

    Article  CAS  Google Scholar 

  28. Y-C. Chen, K-i. Katsumata, Y-H. Chiu, K. Okada, N. Matsushita, and Y-J. Hsu: ZnO–graphene composites as practical photocatalysts for gaseous acetaldehyde degradation and electrolytic water oxidation. Appl. Catal., A 490, 1 (2015).

    Article  CAS  Google Scholar 

  29. H. Chang, Z. Sun, K.Y-F. Ho, X. Tao, F. Yan, W-M. Kwok, and Z. Zheng: A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. Nanoscale 3, 258 (2011).

    Article  CAS  Google Scholar 

  30. Y. Zhang, H. Li, L. Pan, T. Lu, and Z. Sun: Capacitive behavior of graphene–ZnO composite film for supercapacitors. J. Electroanal. Chem. 634, 68 (2009).

    Article  CAS  Google Scholar 

  31. B. Liu and H.C. Zeng: Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 20, 4196 (2004).

    Article  CAS  Google Scholar 

  32. H.L. Cao, X.F. Qian, Q. Gong, W.M. Du, X.D. Ma, and Z.K. Zhu: Shape- and size-controlled synthesis of nanometre ZnO from a simple solution route at room temperature. Nanotechnology 17, 3632 (2006).

    Article  CAS  Google Scholar 

  33. C. Andriamiadamanana, C. Laberty-Robert, M.T. Sougrati, S. Casale, C. Davoisne, S. Patra, and F. Sauvage: Room-temperature synthesis of iron-doped anatase TiO2 for lithium-ion batteries and photocatalysis. Inorg. Chem. 53, 10129 (2014).

    Article  CAS  Google Scholar 

  34. A.P.A. Oliveira, J-F. Hochepied, F. Grillon, and M-H. Berger: Controlled precipitation of zinc oxide particles at room temperature. Chem. Mater. 15, 3202 (2003).

    Article  CAS  Google Scholar 

  35. W.S. Hummers and R.E. Offeman: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).

    Article  CAS  Google Scholar 

  36. B.F. Machado and P. Serp: Graphene-based materials for catalysis. Catal. Sci. Technol. 2, 54 (2012).

    Article  CAS  Google Scholar 

  37. A.C. Ferrari, J.C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K.S. Novoselov, S. Roth, and A.K. Geim: Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 97, 187401 (2006).

    CAS  Google Scholar 

  38. N.P. Herring, S.H. Almahoudi, C.R. Olson, and M.S. El-Shall: Enhanced photocatalytic activity of ZnO–graphene nanocomposites prepared by microwave synthesis. J. Nanopart. Res. 14, 1277 (2012).

    Article  CAS  Google Scholar 

  39. R. Atchudan, T.N.J.I. Edison, S. Perumal, D. Karthikeyan, and Y.R. Lee: Facile synthesis of zinc oxide nanoparticles decorated graphene oxide composite via simple solvothermal route and their photocatalytic activity on methylene blue degradation. J. Photochem. Photobiol., B 162, 500 (2016).

    Article  CAS  Google Scholar 

  40. Y. Feng, Y. Zhang, X. Song, Y. Wei, and V.S. Battaglia: Facile hydrothermal fabrication of ZnO–graphene hybrid anode materials with excellent lithium storage properties. Sustainable Energy Fuels 1, 767 (2017).

    Article  CAS  Google Scholar 

  41. M. Ahmad, E. Ahmed, Z.L. Hong, J.F. Xu, N.R. Khalid, A. Elhissi, and W. Ahmed: A facile one-step approach to synthesizing ZnO/graphene composites for enhanced degradation of methylene blue under visible light. Appl. Surf. Sci. 274, 273 (2013).

    Article  CAS  Google Scholar 

  42. Y. Bu, Z. Chen, W. Li, and B. Hou: Highly efficient photocatalytic performance of graphene–ZnO quasi-shell–core composite material. ACS Appl. Mater. Interfaces 5, 12361 (2013).

    Article  CAS  Google Scholar 

  43. R. Guo, W. Yue, Y. An, Y. Ren, and X. Yan: Graphene-encapsulated porous carbon–ZnO composites as high-performance anode materials for Li-ion batteries. Electrochim. Acta 135, 161 (2014).

    Article  CAS  Google Scholar 

  44. C. Ren, B. Yang, M. Wu, J. Xu, Z. Fu, Y. Lv, T. Guo, Y. Zhao, and C. Zhu: Synthesis of Ag/ZnO nanorods array with enhanced photocatalytic performance. J. Hazard. Mater. 182, 123 (2010).

    Article  CAS  Google Scholar 

  45. N. Li, S.X. Jin, Q.Y. Liao, and C.X. Wang: ZnO anchored on vertically aligned graphene: Binder-free anode materials for lithium-ion batteries. ACS Appl. Mater. Interfaces 6, 20590 (2014).

    Article  CAS  Google Scholar 

  46. O.B. Chae, S. Park, J.H. Ryu, and S.M. Oh: Performance improvement of nano-sized zinc oxide electrode by embedding in carbon matrix for lithium-ion batteries. J. Electrochem. Soc. 160, A11 (2013).

    Article  CAS  Google Scholar 

  47. A. Kushima, X.H. Liu, G. Zhu, Z.L. Wang, J.Y. Huang, and J. Li: Leapfrog cracking and nanoamorphization of ZnO nanowires during in situ electrochemical lithiation. Nano Lett. 11, 4535 (2011).

    Article  CAS  Google Scholar 

  48. M. Ender, J. Illig, and E. Ivers-Tiffée: Three-electrode setups for lithium-ion batteries: I. Fem-simulation of different reference electrode designs and their implications for half-cell impedance spectra. J. Electrochem. Soc. 164, A71 (2017).

    Article  CAS  Google Scholar 

  49. J. Costard, M. Ender, M. Weiss, and E. Ivers-Tiffée: Three-electrode setups for lithium-ion batteries: II. Experimental study of different reference electrode designs and their implications for half-cell impedance spectra. J. Electrochem. Soc. 164, A80 (2017).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported by the independent innovation project of Qian Xuesen Laboratory of Space Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ce Zhang or Yi Men.

Supplementary Material

43578_2018_33101506_MOESM1_ESM.docx

Supporting Information: Room-Temperature Synthesis of ZnO@GONanocompositeas Anode for Lithium-Ion Batteries (approximately 1.42 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qi, Y., Zhang, C., Liu, S. et al. Room-temperature synthesis of ZnO@GO nanocomposites as anode for lithium-ion batteries. Journal of Materials Research 33, 1506–1514 (2018). https://doi.org/10.1557/jmr.2018.110

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.110

Navigation