Skip to main content
Log in

Effect of annealing on magnetic properties of Ni–Mn–Ga glass-coated microwires

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We studied the effect of annealing on magnetic properties and structure of Heusler-type NiMnGa glass-covered microwires with a metallic nucleus diameter of about 22 µm prepared using the Taylor–Ulitovsky method. The as-prepared NiMnGa glass-covered microwires do not present ferromagnetic order at room temperature. Magnetization curves of the as-prepared samples do not present either saturation or coercivity at temperatures above 5 K. After annealing of the microwires, a ferromagnetic ordering is obtained with a Curie temperature of about 300 K which is beneficial for magnetic solid state refrigeration. The hysteresis observed on temperature dependence of magnetization in annealed samples and magnetic softening at about 260 K has been interpreted as the first-order phase transformation. Observed changes have been discussed considering internal stress relaxation after annealing, nanocrystalline structure of the as-prepared and annealed samples, recrystallization process and magnetic ordering of phases identified in the as-prepared sample and appearing under recrystallization. Existence of insulating and flexible glass-coating is beneficial for improvement of mechanical properties but the glass coating considerably affects magnetic properties of NiMnGa microwires. Therefore special attention must be paid to annealing conditions for realization of martensitic transformation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. V.A. Chernenko: Compositional instability of β-phase in Ni–Mn–Ga alloys. Scr. Mater. 40, 523 (1999).

    Article  CAS  Google Scholar 

  2. D.C. Dunand and P. Müllner: Size effects on magnetic actuation in Ni–Mn–Ga shape-memory alloys. Adv. Mater. 23, 216 (2011).

    Article  CAS  Google Scholar 

  3. M. Acet, L. Manosa, and A. Planes: Magnetic-field-induced effects in martensitic Heusler-based magnetic shape-memory alloys. In Handbook of Magnetic Materials, Vol. 19, K.H.J. Buschow, ed. (Elsevier, Amsterdam 2011); pp. 231–289.

    Google Scholar 

  4. M.D. Kuz’min: Factors limiting the operation frequency of magnetic refrigerators. Appl. Phys. Lett. 90, 251916 (2007).

    Article  Google Scholar 

  5. A. Zhukov, V. Rodionova, M. Ilyn, A.M. Aliev, R. Varga, S. Michalik, A. Aronin, G. Abrosimova, A. Kiselev, M. Ipatov, and V. Zhukova: Magnetic properties and magnetocaloric effect in Heusler-type glass-coated NiMnGa microwires. J. Alloy. Comp. 575, 73 (2013).

    Article  CAS  Google Scholar 

  6. A. Zhukov, C. Garcia, M. Ilyn, R. Varga, J.J. del Val, A. Granovsky, V. Rodionova, M. Ipatov, and V. Zhukova: Magnetic and transport properties of granular and Heusler-type glass-coated microwires. J. Magn. Magn. Mater. 324, 3558 (2012).

    Article  CAS  Google Scholar 

  7. A. Zhukov, M. Ipatov, J.J. del Val, V. Zhukova, and V.A. Chernenko: Magnetic and structural properties of glass-coated Heusler-type microwires exhibiting martensitic transformation. Sci. Rep. 8, 621 (2018).

    Article  CAS  Google Scholar 

  8. S. Besseghini, A. Gambardella, V.A. Chernenko, M. Hagler, C. Pohl, P. Mullner, M. Ohtsuka, and S. Doyle: Transformation behavior of Ni–Mn–Ga/Si(100) thin film composites with different film thicknesses. Eur. Phys. J. Spec. Top. 158, 179 (2008).

    Article  Google Scholar 

  9. V. Recarte, J.I. Pérez-Landazábal, V. Sánchez-Alárcos, V.A. Chernenko, and M. Ohtsuka: Magnetocaloric effect linked to the martensitic transformation in sputter-deposited Ni–Mn–Ga thin films. Appl. Phys. Lett. 95, 141908 (2009).

    Article  Google Scholar 

  10. Z.L. Wang, P. Zheng, Z.H. Nie, Y. Ren, Y.D. Wang, P. Müllner, and D.C. Dunand: Superelasticity by reversible variants reorientation in a Ni–Mn–Ga microwire with bamboo grains. Acta Mater. 99, 373 (2015).

    Article  CAS  Google Scholar 

  11. A. Zhukov, M. Ipatov, A. Talaat, J.M. Blanco, B. Hernando, L. Gonzalez-Legarreta, J.J. Suñol, and V. Zhukova: Correlation of crystalline structure with magnetic and transport properties of glass-coated microwires. Crystals 7, 41 (2017).

    Article  Google Scholar 

  12. A.V. Ulitovsky, I.M. Maianski, and A.I. Avramenco: Method of continuous casting of glass coated microwire. USSR Patent No. 128427, Bulletin No. 10, 1960, p. 14.

  13. L. Kraus, J. Schneider, and H. Wiesner: Theory of ferromagnetic resonances in thin wires. Czech. J. Phys. B 26, 601 (1976).

    Article  Google Scholar 

  14. H. Chiriac, T.A. Ovari, and C.S. Marinescu: Giant magneto-impedance effect in nanocrystalline glass-covered wires. J. Appl. Phys. 83, 6584 (1998).

    Article  CAS  Google Scholar 

  15. V. Zhukova, J.M. Blanco, M. Ipatov, and A. Zhukov: Effect of transverse magnetic field on domain wall propagation inmagnetically bistable glass-coated amorphous microwires. J. Appl. Phys. 106, 113914 (2009).

    Article  Google Scholar 

  16. A. Talaat, J. Alonso, V. Zhukova, E. Garaio, J.A. García, H. Srikanth, M.H. Phan, and A. Zhukov: Ferromagnetic glass-coated microwires with good heating properties for magnetic hyperthermia. Sci. Rep. 6, 39300 (2016).

    Article  CAS  Google Scholar 

  17. S. Wagner, H. Gleskova, I-C. Cheng, J.C. Sturm, and Z. Suo: Mechanics of TFT technology on flexible substrates. In Flexible Flat Panel Displays, G.P. Crawford, ed. (John Wiley & Sons, Ltd, Chichester, U.K., 2005); ch. 14, 263–282.

    Chapter  Google Scholar 

  18. A. Zhukov, M. Ipatov, J.J. del Val, S. Taskaev, M. Churyukanova, and V. Zhukova: First-order martensitic transformation in Heusler-type glass-coated microwires. Appl. Phys. Lett. 111, 242403 (2017).

    Article  Google Scholar 

  19. C. Gomez-Polo, J.I. Perez-Landazabal, V. Recarte, V. Sanchez-Alarcos, G. Badini-Confalonieri, and M. Vazquez: Ni–Mn–Ga ferromagnetic shape memory wires. J. Appl. Phys. 107, 123908 (2010).

    Article  Google Scholar 

  20. A.S. Aronin, G.E. Abrosimova, A.P. Kiselev, V. Zhukova, R. Varga, and A. Zhukov: The effect of mechanical stress on Ni63.8Mn11.1Ga25.1 microwire crystalline structure and properties. Intermetallics 43, 60 (2013).

    Article  CAS  Google Scholar 

  21. V. Zhukova, M. Ipatov, A. Granovsky, and A. Zhukov: Magnetic properties of Ni–Mn–In–Co Heusler-type glass-coated microwires. J. Appl. Phys. 115, 17A939 (2014).

    Article  Google Scholar 

  22. V.V. Khovailo, V.A. Chernenko, A.A. Cherechukin, T. Takagi, and T. Abe: An efficient control of Curie temperature TC in Ni–Mn–Ga alloys. J. Magn. Magn Mater. 272–276, 2067 (2004).

    Article  Google Scholar 

  23. A. Kazakov, V. Prudnikov, A. Granovsky, N. Perov, I. Dubenko, A.K. Pathak, T. Samanta, S. Stadler, N. Ali, A. Zhukov, M. Ilyin, and J. Gonzalez: Phase transitions, magnetotransport and magnetocaloric effects in a new family of quaternary Ni–Mn–In–Z Heusler alloys. J. Nanosci. Nanotechnol. 12, 7426 (2012).

    Article  CAS  Google Scholar 

  24. V. Sanchez-Alarcos, J.I. Perez-Landazabal, V. Recarte, J.A. Rodrıguez-Velamazan, and V.A. Chernenko: Effect of atomic order on the martensitic and magnetic transformations in Ni–Mn–Ga ferromagnetic shape memory alloys. J. Phys.: Condens. Matter 22, 166001 (2010).

    CAS  Google Scholar 

  25. V.A. Chernenko, V.A. L’vov, S.P. Zagorodnyuk, and T. Takagi: Ferromagnetism of thermoelastic martensites: Theory and experiment. Phys. Rev. B 67, 064407 (2003).

    Article  Google Scholar 

  26. S.K. Wu and S.T. Yang: Effect of composition on transformation temperatures of Ni–Mn–Ga shape memory alloys. Mater. Lett. 57, 4291 (2003).

    Article  CAS  Google Scholar 

  27. S. Shevyrtalov, A. Zhukov, V. Zhukova, and V. Rodionova: Internal stresses influence on magnetic properties of Ni–Mn–Ga Heusler-type microwires. Intermetallics 94, 42–46 (2018).

    Article  CAS  Google Scholar 

  28. T. Tietze, P. Audehm, Y-C. Chen, G. Schutz, B.B. Straumal, S.G. Protasova, A.A. Mazilkin, P.B. Straumal, T. Prokscha, H. Luetkens, Z. Salman, A. Suter, B. Baretzky, K. Fink, W. Wenzel, D. Danilov, and E. Goering: Interfacial dominated ferromagnetism in nanograined ZnO: A µSR and DFT study. Sci. Rep. 5, 8871 (2014).

    Article  Google Scholar 

  29. A. Hernando and I. Navarro: Magnetism of soft nanocrystalline materials. In Nanophase Materials, G.C. Hadjipanayis and R.W. Siegel, eds.; NATO ASI Series (Series E: Applied Sciences), Vol. 260 (Springer, Dordrecht, 1994); pp. 703–711.

    Google Scholar 

  30. A. Zhukov, M. Ipatov, A. Talaat, A. Aronin, G. Abrosimova, J.J. del Val, and V. Zhukova: Magnetic hardening of Fe–Pt and Fe–Pt–M (M = B, Si) microwires. J. Alloy. Comp. 735, 1071–1078 (2018).

    Article  CAS  Google Scholar 

  31. L-S. Hsu, Y-K. Wang, and G.Y. Guo: Experimental and theoretical study of the electronic structures of Ni3Al, Ni3Ga, Ni3In and NiGa. J. Appl. Phys. 92, 1419 (2002).

    Article  CAS  Google Scholar 

  32. D. Aurongzeb, D.Y. Song, G. Kipshidze, B. Yavich, L. Nyakiti, R. Lee, J. Chaudhuri, H. Temkin, and M. Holtz: Growth of GaN nanowires on epitaxial GaN. J. Electron. Mater. 37, 1076 (2008).

    Article  CAS  Google Scholar 

  33. A.S. Antonov, V.T. Borisov, O.V. Borisov, A.F. Prokoshin, and N.A. Usov: Residual quenching stresses in glass-coated amorphous ferromagnetic microwires. J. Phys. D: Appl. Phys. 33, 1161 (2000).

    Article  CAS  Google Scholar 

  34. H. Chiriac, T.A. Ovari, and G. Pop: Internal stress distribution in glass-covered amorphous magnetic wires. Phys. Rev. B 42, 10105 (1995).

    Google Scholar 

  35. A. Zhukov, J. Gonzalez, A. Torcunov, E. Pina, M.J. Prieto, A.F. Cobeño, J.M. Blanco, V. Larin, and S. Baranov: Ferromagnetic resonance and structure of Fe-based glass-coated microwires. J. Magn. Magn. Mater. 203, 238 (1999).

    Article  CAS  Google Scholar 

  36. A. Zhukov, M. Ipatov, M. Churyukanova, A. Talaat, J.M. Blanco, and V. Zhukova: Trends in optimization of giant magnetoimpedance effect in amorphous and nanocrystalline materials. J. Alloy. Comp. 727, 887 (2017).

    Article  CAS  Google Scholar 

  37. A. Zhukov, M. Vázquez, J. Velázqez, A. Hernando, and V. Larin: Magnetic properties of Fe-based glass-coated microwires. J. Magn. Magn. Mater. 170, 323 (1997).

    Article  CAS  Google Scholar 

  38. V. Zhukova, A.F. Cobeño, A. Zhukov, A.R. de Arellano Lopez, S. López-Pombero, J.M. Blanco, V. Larin, and J. Gonzalez: Correlation between magnetic and mechanical properties of devitrified glass-coated Fe71.8Cu1Nb3.1Si15B9.1 microwires. J. Magn. Magn. Mater. 249, 79 (2002).

    Article  CAS  Google Scholar 

  39. A. Zhukov, M. Ipatov, J.J. del Val, M. Churyukanova, and V. Zhukova: Tailoring of magnetic properties of Heusler-type glass-coated microwires by annealing. J. Alloy. Comp. 732, 561 (2018).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by Spanish Ministry of Economy and Competitiveness (MINECO) under MAT2013-47231-C2-1-P Project, by the Basque Government under Elkartek RTM 4.0 grant and under the scheme of “Ayuda a Grupos Consolidados” (Ref. No. IT954-16). The authors thank for technical and human support provided by SGIker (Magnetic Measurements Gipuzkoa) of UPV/EHU. A.Z. and V.Z. wish to acknowledge support of the Basque Government under Program of Mobility of the Investigating Personnel (Grant Nos. MV-2017-1-0025 and MV-2017-1-0030 respectively).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arcady Zhukov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhukov, A., Ipatov, M., del Val, J.J. et al. Effect of annealing on magnetic properties of Ni–Mn–Ga glass-coated microwires. Journal of Materials Research 33, 2148–2155 (2018). https://doi.org/10.1557/jmr.2018.105

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.105

Navigation