Skip to main content
Log in

Wetting and brazing of Ni-coated WC-8Co cemented carbide using the Cu-19Ni-5Al alloy as the filler metal: Microstructural evolution and joint mechanical properties

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The wetting of Cu-19Ni-5Al alloy on Ni-coated WC-8Co substrates with different coating thicknesses was investigated, and the brazing of Ni-coated WC-8Co to SAE1045 steel was performed by using the Cu-19Ni-5Al alloy as the filler metal. All the Cu-19Ni-5Al/Ni-coated WC-8Co systems present excellent wettability with a final contact angle of ∼10°. The thicknesses of the β + γ phase enriched with Co, Ni, and Al at the two joint interfaces increase and decrease with the Ni coating thickness, brazing temperature, and holding time increasing, respectively. The joint shear strength increases first and then decreases with the increase of Ni coating thickness, brazing temperature, or holding time. The maximum joint shear strength of ∼328 MPa is obtained while Ni plating for 90 min and brazing at 1210 °C × 5 min.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10

Similar content being viewed by others

References

  1. G.S. Upadhyaya: Materials science of cemented carbides—An overview. Mater. Des. 22, 483 (2001).

    Article  CAS  Google Scholar 

  2. X.H. Qu, J.X. Gao, M.L. Qin, and C.M. Lei: Application of a wax-based binder in PIM of WC–TiC–Co cemented carbides. Int. J. Refract. Met. Hard Mater. 23, 273 (2005).

    Article  CAS  Google Scholar 

  3. J. Yong and C. Ding: Effect of cryogenic treatment on WC–8Co cemented carbides. Mater. Sci. Eng., A 528, 1735 (2011).

    Article  Google Scholar 

  4. W.B. Lee, B.D. Kwon, and S.B. Jung: Effect of bonding time on joint properties of vacuum brazed WC–8Co hard metal/carbon steel using stacked Cu and Ni alloy as insert metal. Mater. Sci. Technol. 20, 1474 (2004).

    Article  CAS  Google Scholar 

  5. W.B. Lee, B.D. Kwon, and S.B. Jung: Effects of Cr3C2 on the microstructure and mechanical properties of the brazed joints between WC–8Co and carbon steel. Int. J. Refract. Met. Hard Mater. 24, 215 (2006).

    Article  CAS  Google Scholar 

  6. H.S. Chen, K.Q. Feng, S.F. Wei, J. Xiong, Z.X. Guo, and H. Wang: Microstructure and properties of WC–Co/3Cr13 joints brazed using Ni electroplated interlayer. Int. J. Refract. Met. Hard Mater. 33, 70 (2012).

    Article  Google Scholar 

  7. M. Uzkut, N.S. Koksal, and B.S. Unlu: The determination of element diffusion in connecting SAE 1040/WC material by brazing. J. Mater. Process. Technol. 169, 409 (2005).

    Article  CAS  Google Scholar 

  8. Y.W. Sui, H.B. Luo, Y. Lv, F.X. Wei, J.Q. Qi, and Y.Z. He: Influence of brazing technology on the microstructure and properties of YG20C cemented carbide and 16Mn steel joints. Weld. World 60, 1269 (2016).

    Article  CAS  Google Scholar 

  9. C. Jiang, H. Chen, Q.Y. Wang, and Y.X. Li: Effect of brazing temperature and holding time on joint properties of induction brazed WC–8Co/carbon steel using Ag–based alloys. J. Mater. Process. Technol. 229, 562 (2016).

    Article  CAS  Google Scholar 

  10. M.I. Barrena, J.M.G. de Salazar, and M. Gomez-Vacas: Numerical simulation and experimental analysis of vacuum brazing for steel/cermet. Ceram. Int. 40, 10557 (2014).

    Article  CAS  Google Scholar 

  11. X.Z. Zhang, G.W. Liu, J.N. Tao, H.C. Shao, H. Fu, T.Z. Pan, and G.J. Qiao: Vacuum brazing of WC–8Co cemented carbides to carbon steel using pure Cu and Ag–28Cu as filler metal. J. Mater. Eng. Perform. 26, 488 (2017).

    Article  CAS  Google Scholar 

  12. L. Zhu, L.M. Luo, J. Luo, Y.C. Wu, and J. Li: Effect of electroless plating Ni–Cu–P layer on brazability of cemented carbide to steel. Surf. Coat. Technol. 206, 2521 (2012).

    Article  CAS  Google Scholar 

  13. T. Iamboliev, S. Valkanov, and S. Atanasova: Microstructure embrittlement of hard metal–steel joint obtained under induction heating diffusion bonding. Int. J. Refract. Met. Hard Mater. 37, 90 (2013).

    Article  CAS  Google Scholar 

  14. K.Q. Feng, H.S. Chen, J. Xiong, and Z.X. Guo: Investigation on diffusion bonding of functionally graded WC–8Co/Ni composite and stainless steel. Mater. Des. 46, 622 (2013).

    Article  CAS  Google Scholar 

  15. M.I. Barrena, J.M.G. de Salazar, and L. Matesanz: Interfacial microstructure and mechanical strength of WC–8Co/90MnCrV8 cold work tool steel diffusion bonded joint with Cu/Ni electroplated interlayer. Mater. Des. 31, 3389 (2010).

    Article  CAS  Google Scholar 

  16. M.I. Barrena, J.M. Gomez de Salazar, and L. Matesanz: Ni–Cu alloy for diffusion bonding cermet/steel in air. Mater. Lett. 63, 2142 (2009).

    Article  CAS  Google Scholar 

  17. Y.J. Guo, Y.Q. Wang, B.X. Gao, Z.Q. Shi, and Z.W. Yuan: Rapid diffusion bonding of WC–Co cemented carbide to 40Cr steel with Ni interlayer: Effect of surface roughness and interlayer thickness. Ceram. Int. 42, 16729 (2016).

    Article  CAS  Google Scholar 

  18. P.Q. Xu, J.W. Ren, P.L. Zhang, H.Y. Gong, and S.L. Yang: Analysis of formation and interfacial WC dissolution behavior of WC–8Co/invar laser–TIG welded joints. J. Mater. Eng. Perform. 22, 613 (2013).

    Article  CAS  Google Scholar 

  19. D.R. Zhou, H.C. Cui, P.Q. Xu, and F.G. Lu: Tungsten carbide grain size computation for WC–Co dissimilar welds. J. Mater. Eng. Perform. 25, 2500 (2016).

    Article  CAS  Google Scholar 

  20. Y.G. Guo, B.X. Gao, G.W. Liu, T.T. Zhou, and G.J. Qiao: Effect of temperature on the microstructure and bonding strength of partial transient liquid phase bonded WC–8Co/40Cr joints using Ti/Ni/Ti interlayers. Int. J. Refract. Met. Hard Mater. 51, 250 (2015).

    Article  CAS  Google Scholar 

  21. G.W. Liu, F. Valenza, M.L. Muolo, G.J. Qiao, and A. Passerone: Wetting and interfacial behavior of Ni–Si alloy on different substrates. J. Mater. Sci. 44, 5990 (2009).

    Article  CAS  Google Scholar 

  22. G.W. Liu, F. Valenza, M.L. Muolo, and A. Passerone: SiC/SiC and SiC/Kovar joining by Ni–Si and Mo interlayers. J. Mater. Sci. 45, 4299 (2010).

    Article  CAS  Google Scholar 

  23. G.W. Liu, G.J. Qiao, H.J. Wang, J.F. Yang, and T.J. Lu: Pressureless brazing of zirconia to stainless steel with Ag–Cu filler metal and TiH2 powder. J. Eur. Ceram. Soc. 28, 2701 (2008).

    Article  CAS  Google Scholar 

  24. Y. Sechi, T. Tsumura, and K. Nakata: Dissimilar laser brazing of boron nitride and tungsten carbide. Mater. Des. 31, 2071 (2010).

    Article  CAS  Google Scholar 

  25. V.L. Silva, C.M. Fernandes, and A.M.R. Senos: Copper wettability on tungsten carbide surfaces. Ceram. Int. 42, 1191 (2016).

    Article  CAS  Google Scholar 

  26. Z. Mirski and T. Piwowarczyk: Wettability of hardmetal surfaces prepared for brazing with various methods. Arch. Civ. Mech. Eng. 11, 411 (2011).

    Article  Google Scholar 

  27. R. Kainuma, M. Ise, C.C. Jia, H. Ohtani, and K. Ishida: Phase equilibria and microstructural control in the Ni–Co–Al system. Intermetallics 4, 151 (1996).

    Article  Google Scholar 

  28. J. Liu and J.G. Li: Microstructure, microstructure, shape memory effect and mechanical properties of rapidly solidified Co–Ni–Al magnetic shape memory alloys. Mater. Sci. Eng., A 454–455, 423 (2007).

    Article  Google Scholar 

  29. K. Ishida, R. Kainuma, U. Ueno, and T. Nishizawa: Ductility enhancement in NiAl (B2)-base alloys by microstructural control. Metall. Trans. A 22, 441 (1991).

    Article  Google Scholar 

  30. N. Eustathopoulos: Progress in understanding and modeling reactive wetting of metals on ceramics. Curr. Opin. Solid State Mater. Sci. 9, 152 (2005).

    Article  CAS  Google Scholar 

  31. N. Eustathopoulos: Wetting by liquid metals—Application in materials processing: The contribution of the grenoble group. Metals 5, 350 (2015).

    Article  Google Scholar 

  32. E. Saiz, A.P. Tomsia, and R.M. Cannon: Ridging effects on wetting and spreading of liquids on solids. Acta Mater. 46, 2349 (1998).

    Article  CAS  Google Scholar 

  33. E. Saiz, R.M. Cannon, and A.P. Tomsia: Reactive spreading: Adsorption, ridging and compound formation. Acta Mater. 48, 4449 (2000).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (51572112); the Natural Science Foundation of Jiangsu Province (BK20151340); the Six Talent Peaks Project of Jiangsu Province (2014-XCL-002, TD-XCL-004); the 333 talents project of Jiangsu province (BRA2017387); and the Innovation/Entrepreneurship Program of Jiangsu Province ([2015]26) and the Qing Lan Project ([2016]15).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Guiwu Liu or Guanjun Qiao.

Supplementary Material

43578_2018_33111671_MOESM1_ESM.doc

Supporting Information: Wetting and brazing of Ni-coated WC-8Co cemented carbide using Cu-19Ni-5Al alloy as filler metal: Microstructural evolution and joint mechanical properties (approximately 34 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Huang, Z., Liu, G. et al. Wetting and brazing of Ni-coated WC-8Co cemented carbide using the Cu-19Ni-5Al alloy as the filler metal: Microstructural evolution and joint mechanical properties. Journal of Materials Research 33, 1671–1680 (2018). https://doi.org/10.1557/jmr.2018.101

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2018.101

Navigation