Skip to main content
Log in

Structure formation and evolution in semiconductor films for perovskite and organic photovoltaics

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The research and development of novel photovoltaic technologies is going through a golden era, thanks to the demonstration of remarkable efficiencies across a broad range of semiconductor classes and device architectures. In parallel with these developments, the opportunities for characterizing the structure of a semiconductor film in situ of a processing step have also increased, to the extent that in situ and in operando experiments are becoming readily accessible to researchers. These combined advances represent the subject matter of this article, wherein studies that improve our understanding of structure formation and evolution in perovskite and organic semiconductor films for innovative solar cells are reviewed. Although focus is placed on the dynamics of semiconductor film formation, the review also highlights recent research on environmental testing, a key component in the development of materials with high intrinsic stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
FIG. 11
FIG. 12
FIG. 13
FIG. 14
FIG. 15
FIG. 16
FIG. 17
FIG. 18
FIG. 19
FIG. 20
FIG. 21
FIG. 22

Similar content being viewed by others

References

  1. R.A. Kerr: Do we have the energy for the next transition? Science 329(5993), 780 (2010).

    Article  CAS  Google Scholar 

  2. A. Cho: Energy’s tricky tradeoffs. Science 329(5993), 786 (2010).

    Article  CAS  Google Scholar 

  3. I.E. Agency: Technology Roadmap: Solar Photovoltaic Energy (2014 Edition), (2014).

  4. BP Statistical Review of World Energy 2016—Data workbook http://www.bp.com/en/global/corporate/energy-economics/statistical-review-of-world-energy.html.

  5. Global Market Outlook for Photovoltaics 2014–2018 http://www.solarpowereurope.org/home/.

  6. A. Polman, M. Knight, E.C. Garnett, B. Ehrler, and W.C. Sinke: Photovoltaic materials: Present efficiencies and future challenges. Science 352(6283), aad4424 (2016).

    Article  CAS  Google Scholar 

  7. A.J. Pearson, T. Wang, and D.G. Lidzey: The role of dynamic measurements in correlating structure with optoelectronic properties in polymer:fullerene bulk-heterojunction solar cells. Rep. Prog. Phys. 76(2), 022501 (2013).

    Article  CAS  Google Scholar 

  8. G. Li, R. Zhu, and Y. Yang: Polymer solar cells. Nat. Photonics 6(3), 153 (2012).

    Article  CAS  Google Scholar 

  9. M.A. Green, A. Ho-Baillie, and H.J. Snaith: The emergence of perovskite solar cells. Nat. Photonics 8(7), 506 (2014).

    Article  CAS  Google Scholar 

  10. S.B. Darling and F. You: The case for organic photovoltaics. RSC Adv. 3(39), 17633 (2013).

    Article  CAS  Google Scholar 

  11. J. Gong, S.B. Darling, and F. You: Perovskite photovoltaics: Life-cycle assessment of energy and environmental impacts. Energy Environ. Sci. 8(7), 1953 (2015).

    Article  CAS  Google Scholar 

  12. Best Research-Cell Efficiencies http://www.nrel.gov/ncpv/images/efficiency_chart.jpg.

  13. P. Müller-Buschbaum: The active layer morphology of organic solar cells probed with grazing incidence scattering techniques. Adv. Mater. 26(46), 7692 (2014).

    Article  CAS  Google Scholar 

  14. W. Chen, M.P. Nikiforov, and S.B. Darling: Morphology characterization in organic and hybrid solar cells. Energy Environ. Sci. 5(8), 8045 (2012).

    Article  CAS  Google Scholar 

  15. L.M. Pazos-Outon, M. Szumilo, R. Lamboll, J.M. Richter, M. Crespo-Quesada, M. Abdi-Jalebi, H.J. Beeson, M. Vrućinić, M. Alsari, H.J. Snaith, B. Ehrler, R.H. Friend, and F. Deschler: Photon recycling in lead iodide perovskite solar cells. Science 351(6280), 1430 (2016).

    Article  CAS  Google Scholar 

  16. T.M. Brenner, D.A. Egger, L. Kronik, G. Hodes, and D. Cahen: Hybrid organic–inorganic perovskites: Low-cost semiconductors with intriguing charge-transport properties. Nat. Rev. Mater. 1(1), 15007 (2016).

    Article  CAS  Google Scholar 

  17. B.R. Sutherland and E.H. Sargent: Perovskite photonic sources. Nat. Photonics 10(5), 295 (2016).

    Article  CAS  Google Scholar 

  18. H. Zhu, K. Miyata, Y. Fu, J. Wang, P.P. Joshi, D. Niesner, K.W. Williams, S. Jin, and X.Y. Zhu: Screening in crystalline liquids protects energetic carriers in hybrid perovskites. Science 353(6306), 1409 (2016).

    Article  CAS  Google Scholar 

  19. W. Zhang, G.E. Eperon, and H.J. Snaith: Metal halide perovskites for energy applications. Nat. Energy 1(6), 16048 (2016).

    Article  CAS  Google Scholar 

  20. C.C. Stoumpos and M.G. Kanatzidis: Halide perovskites: Poor Man’s high-performance semiconductors. Adv. Mater. 28(28), 5778 (2016).

    Article  CAS  Google Scholar 

  21. C.C. Stoumpos and M.G. Kanatzidis: The renaissance of halide perovskites and their evolution as emerging semiconductors. Acc. Chem. Res. 48(10), 2791 (2015).

    Article  CAS  Google Scholar 

  22. Y. Deng, E. Peng, Y. Shao, Z. Xiao, Q. Dong, and J. Huang: Scalable fabrication of efficient organolead trihalide perovskite solar cells with doctor-bladed active layers. Energy Environ. Sci. 8(5), 1544 (2015).

    Article  CAS  Google Scholar 

  23. A.T. Barrows, A.J. Pearson, C.K. Kwak, A.D.F. Dunbar, A.R. Buckley, and D.G. Lidzey: Efficient planar heterojunction mixed-halide perovskite solar cells deposited via spray-deposition. Energy Environ. Sci. 7(9), 2944 (2014).

    Article  CAS  Google Scholar 

  24. K. Hwang, Y-S. Jung, Y-J. Heo, F.H. Scholes, S.E. Watkins, J. Subbiah, D.J. Jones, D-Y. Kim, and D. Vak: Toward large scale roll-to-roll production of fully printed perovskite solar cells. Adv. Mater. 27(7), 1241 (2015).

    Article  CAS  Google Scholar 

  25. T.M. Schmidt, T.T. Larsen-Olsen, J.E. Carlé, D. Angmo, and F.C. Krebs: Upscaling of perovskite solar cells: Fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Adv. Energy Mater. 5(15), 1500569 (2015).

    Article  CAS  Google Scholar 

  26. G. Li, Z-K. Tan, D. Di, M.L. Lai, L. Jiang, J.H-W. Lim, R.H. Friend, and N.C. Greenham: Efficient light-emitting diodes based on nanocrystalline perovskite in a dielectric polymer matrix. Nano Lett. 15(4), 2640 (2015).

    Article  CAS  Google Scholar 

  27. Y-H. Kim, H. Cho, J.H. Heo, T-S. Kim, N. Myoung, C-L. Lee, S.H. Im, and T-W. Lee: Multicolored organic/inorganic hybrid perovskite light-emitting diodes. Adv. Mater. 27(7), 1248 (2015).

    Article  CAS  Google Scholar 

  28. H. Cho, S.H. Jeong, M.H. Park, Y.H. Kim, C. Wolf, C.L. Lee, J.H. Heo, A. Sadhanala, N. Myoung, S. Yoo, S.H. Im, R.H. Friend, and T.W. Lee: Overcoming the electroluminescence efficiency limitations of perovskite light-emitting diodes. Science 350(6265), 1222 (2015).

    Article  CAS  Google Scholar 

  29. N. Wang, L. Cheng, R. Ge, S. Zhang, Y. Miao, W. Zou, C. Yi, Y. Sun, Y. Cao, R. Yang, Y. Wei, Q. Guo, Y. Ke, M. Yu, Y. Jin, Y. Liu, Q. Ding, D. Di, L. Yang, G. Xing, H. Tian, C. Jin, F. Gao, R.H. Friend, J. Wang, and W. Huang: Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10(11), 699 (2016).

    Article  CAS  Google Scholar 

  30. A Web of Science search on the 29th November 2016 for “Topic = Perovskite solar cell’ and ‘Document type = ‘Review”’ returned 163 results, including 93 for the 2016 publication year.

  31. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, and H.J. Snaith: Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338(6107), 643 (2012).

    Article  CAS  Google Scholar 

  32. J. Burschka, N. Pellet, S-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, and M. Grätzel: Sequential deposition as a route to high-performance perovskite-sensitized solar cells. Nature 499(7458), 316 (2013).

    Article  CAS  Google Scholar 

  33. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131(17), 6050 (2009).

    Article  CAS  Google Scholar 

  34. W. Travis, E.N.K. Glover, H. Bronstein, D.O. Scanlon, and R.G. Palgrave: On the application of the tolerance factor to inorganic and hybrid halide perovskites: A revised system. Chem. Sci. 7(7), 4548 (2016).

    Article  CAS  Google Scholar 

  35. M. Saliba, T. Matsui, K. Domanski, J.Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, and M. Gratzel: Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance. Science 354(6309), 206 (2016).

    Article  CAS  Google Scholar 

  36. G.E. Eperon, T. Leijtens, K.A. Bush, R. Prasanna, T. Green, J.T.W. Wang, D.P. McMeekin, G. Volonakis, R.L. Milot, R. May, A. Palmstrom, D.J. Slotcavage, R.A. Belisle, J.B. Patel, E.S. Parrott, R.J. Sutton, W. Ma, F. Moghadam, B. Conings, A. Babayigit, H.G. Boyen, S. Bent, F. Giustino, L.M. Herz, M.B. Johnston, M.D. McGehee, and H.J. Snaith: Perovskite–perovskite tandem photovoltaics with optimized band gaps. Science 354(6314), 861 (2016).

    Article  CAS  Google Scholar 

  37. M. Liu, M.B. Johnston, and H.J. Snaith: Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501(7467), 395 (2013).

    Article  CAS  Google Scholar 

  38. P. Pistor, J. Borchert, W. Fränzel, R. Csuk, and R. Scheer: Monitoring the phase formation of coevaporated lead halide perovskite thin films by in situ X-ray diffraction. J. Phys. Chem. Lett. 5(19), 3308 (2014).

    Article  CAS  Google Scholar 

  39. C.C. Stoumpos, C.D. Malliakas, and M.G. Kanatzidis: Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52(15), 9019 (2013).

    Article  CAS  Google Scholar 

  40. T. Baikie, Y. Fang, J.M. Kadro, M. Schreyer, F. Wei, S.G. Mhaisalkar, M. Graetzel, and T.J. White: Synthesis and crystal chemistry of the hybrid perovskite (CH3NH3)PbI3 for solid-state sensitised solar cell applications. J. Mater. Chem. A 1(18), 5628 (2013).

    Article  CAS  Google Scholar 

  41. Y. Kawamura, H. Mashiyama, and K. Hasebe: Structural study on cubic–tetragonal transition of CH3NH3PbI3. J. Phys. Soc. Jpn. 71(7), 1694 (2002).

    Article  CAS  Google Scholar 

  42. Q. Wang, M. Lyu, M. Zhang, J-H. Yun, H. Chen, and L. Wang: Transition from the tetragonal to cubic phase of organohalide perovskite: The role of chlorine in crystal formation of CH3NH3PbI3 on TiO2 substrates. J. Phys. Chem. Lett. 6(21), 4379 (2015).

    Article  CAS  Google Scholar 

  43. J.H. Noh, S.H. Im, J.H. Heo, T.N. Mandal, and S.I. Seok: Chemical management for colorful, efficient, and stable inorganic–organic hybrid nanostructured solar cells. Nano Lett. 13(4), 1764 (2013).

    Article  CAS  Google Scholar 

  44. Q. Chen, H. Zhou, Y. Fang, A.Z. Stieg, T-B. Song, H-H. Wang, X. Xu, Y. Liu, S. Lu, J. You, P. Sun, J. McKay, M.S. Goorsky, and Y. Yang: The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells. Nat. Commun. 6, 7269 (2015).

    Article  CAS  Google Scholar 

  45. S.D. Stranks, G.E. Eperon, G. Grancini, C. Menelaou, M.J.P. Alcocer, T. Leijtens, L.M. Herz, A. Petrozza, and H.J. Snaith: Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber. Science 342(6156), 341 (2013).

    Article  CAS  Google Scholar 

  46. S. Colella, E. Mosconi, G. Pellegrino, A. Alberti, V.L.P. Guerra, S. Masi, A. Listorti, A. Rizzo, G.G. Condorelli, F. De Angelis, and G. Gigli: Elusive presence of chloride in mixed halide perovskite solar cells. J. Phys. Chem. Lett. 5(20), 3532 (2014).

    Article  CAS  Google Scholar 

  47. G. Grancini, S. Marras, M. Prato, C. Giannini, C. Quarti, F. De Angelis, M. De Bastiani, G.E. Eperon, H.J. Snaith, L. Manna, and A. Petrozza: The impact of the crystallization processes on the structural and optical properties of hybrid perovskite films for photovoltaics. J. Phys. Chem. Lett. 5(21), 3836 (2014).

    Article  CAS  Google Scholar 

  48. H. Yu, F. Wang, F. Xie, W. Li, J. Chen, and N. Zhao: The role of chlorine in the formation process of “CH3NH3PbI3− xClx” perovskite. Adv. Funct. Mater. 24(45), 7102–7108 (2014).

    CAS  Google Scholar 

  49. A. Dualeh, N. Tétreault, T. Moehl, P. Gao, M.K. Nazeeruddin, and M. Grätzel: Effect of annealing temperature on film morphology of organic–inorganic hybrid pervoskite solid-state solar cells. Adv. Funct. Mater. 24(21), 3250 (2014).

    Article  CAS  Google Scholar 

  50. G.E. Eperon, S.N. Habisreutinger, T. Leijtens, B.J. Bruijnaers, J.J. van Franeker, D.W. deQuilettes, S. Pathak, R.J. Sutton, G. Grancini, D.S. Ginger, R.A.J. Janssen, A. Petrozza, and H.J. Snaith: The importance of moisture in hybrid lead halide perovskite thin film fabrication. ACS Nano 9(9), 9380 (2015).

    Article  CAS  Google Scholar 

  51. A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber, P. Azarhoosh, M. van Schilfgaarde, M.T. Weller, T. Bein, J. Nelson, P. Docampo, and P.R.F. Barnes: Reversible hydration of CH3NH3PbI3 in films, single crystals, and solar cells. Chem. Mater. 27(9), 3397 (2015).

    Article  CAS  Google Scholar 

  52. E.L. Unger, A.R. Bowring, C.J. Tassone, V.L. Pool, A. Gold-Parker, R. Cheacharoen, K.H. Stone, E.T. Hoke, M.F. Toney, and M.D. McGehee: Chloride in lead chloride-derived organo-metal halides for perovskite-absorber solar cells. Chem. Mater. 26(24), 7158 (2014).

    Article  CAS  Google Scholar 

  53. A.T. Barrows, S. Lilliu, A.J. Pearson, D. Babonneau, A.D.F. Dunbar, and D.G. Lidzey: Monitoring the formation of a CH3NH3PbI3− xClx perovskite during thermal annealing using X-ray scattering. Adv. Funct. Mater. 26(27), 4934 (2016).

    Article  CAS  Google Scholar 

  54. D.T. Moore, H. Sai, K.W. Tan, D-M. Smilgies, W. Zhang, H.J. Snaith, U. Wiesner, and L.A. Estroff: Crystallization kinetics of organic–inorganic trihalide perovskites and the role of the lead anion in crystal growth. J. Am. Chem. Soc. 137(6), 2350 (2015).

    Article  CAS  Google Scholar 

  55. K.W. Tan, D.T. Moore, M. Saliba, H. Sai, L.A. Estroff, T. Hanrath, H.J. Snaith, and U. Wiesner: Thermally induced structural evolution and performance of mesoporous block copolymer-directed alumina perovskite solar cells. ACS Nano 8(5), 4730 (2014).

    Article  CAS  Google Scholar 

  56. L.H. Rossander, T.T. Larsen-Olsen, H.F. Dam, T.M. Schmidt, M. Corazza, K. Norrman, I. Rajkovic, J.W. Andreasen, and F.C. Krebs: In situ X-ray scattering of perovskite solar cell active layers roll-to-roll coated on flexible substrates. CrystEngComm 18(27), 5083 (2016).

    Article  CAS  Google Scholar 

  57. D.P. Nenon, J.A. Christians, L.M. Wheeler, J.L. Blackburn, E.M. Sanehira, B. Dou, M.L. Olsen, K. Zhu, J.J. Berry, and J.M. Luther: Structural and chemical evolution of methylammonium lead halide perovskites during thermal processing from solution. Energy Environ. Sci. 9(6), 2072 (2016).

    Article  CAS  Google Scholar 

  58. C-Y. Chang, Y-C. Huang, C-S. Tsao, and W-F. Su: Formation mechanism and control of perovskite films from solution to crystalline phase studied by in situ synchrotron scattering. ACS Appl. Mater. Interfaces 8(40), 26712 (2016).

    Article  CAS  Google Scholar 

  59. S. Lilliu, J. Griffin, A.T. Barrows, M. Alsari, B. Curzadd, T.G. Dane, O. Bikondoa, J.E. Macdonald, and D.G. Lidzey: Grain rotation and lattice deformation during perovskite spray coating and annealing probed in situ by GI-WAXS. CrystEngComm 18(29), 5448 (2016).

    Article  CAS  Google Scholar 

  60. S.T. Williams, F. Zuo, C-C. Chueh, C-Y. Liao, P-W. Liang, and A.K.Y. Jen: Role of chloride in the morphological evolution of organo-lead halide perovskite thin films. ACS Nano 8(10), 10640 (2014).

    Article  CAS  Google Scholar 

  61. G.E. Eperon, V.M. Burlakov, P. Docampo, A. Goriely, and H.J. Snaith: Morphological control for high performance, solution-processed planar heterojunction perovskite solar cells. Adv. Funct. Mater. 24(1), 151 (2014).

    Article  CAS  Google Scholar 

  62. R. Kang, J-E. Kim, J-S. Yeo, S. Lee, Y-J. Jeon, and D-Y. Kim: Optimized organometal halide perovskite planar hybrid solar cells via control of solvent evaporation rate. J. Phys. Chem. C 118(46), 26513 (2014).

    Article  CAS  Google Scholar 

  63. M-F. Xu, H. Zhang, S. Zhang, H.L. Zhu, H-M. Su, J. Liu, K.S. Wong, L-S. Liao, and W.C.H. Choy: A low temperature gradual annealing scheme for achieving high performance perovskite solar cells with no hysteresis. J. Mater. Chem. A 3(27), 14424 (2015).

    Article  CAS  Google Scholar 

  64. D.H. Cao, C.C. Stoumpos, C.D. Malliakas, M.J. Katz, O.K. Farha, J.T. Hupp, and M.G. Kanatzidis: Remnant PbI2, an unforeseen necessity in high-efficiency hybrid perovskite-based solar cells? APL Mater. 2(9), 091101 (2014).

    Article  CAS  Google Scholar 

  65. T.J. Jacobsson, J-P. Correa-Baena, E. Halvani Anaraki, B. Philippe, S.D. Stranks, M.E.F. Bouduban, W. Tress, K. Schenk, J. Teuscher, J-E. Moser, H. Rensmo, and A. Hagfeldt: Unreacted PbI2 as a double-edged sword for enhancing the performance of perovskite solar cells. J. Am. Chem. Soc. 138(32), 10331 (2016).

    Article  CAS  Google Scholar 

  66. F. Liu, Q. Dong, M.K. Wong, A.B. Djurišić, A. Ng, Z. Ren, Q. Shen, C. Surya, W.K. Chan, J. Wang, A.M.C. Ng, C. Liao, H. Li, K. Shih, C. Wei, H. Su, and J. Dai: Is excess PbI2 beneficial for perovskite solar cell performance? Adv. Energy Mater. 6(7), 1502206 (2016).

    Article  CAS  Google Scholar 

  67. Q. Chen, H. Zhou, Z. Hong, S. Luo, H-S. Duan, H-H. Wang, Y. Liu, G. Li, and Y. Yang: Planar heterojunction perovskite solar cells via vapor-assisted solution process. J. Am. Chem. Soc. 136(2), 622 (2014).

    Article  CAS  Google Scholar 

  68. Z. Zhou, Z. Wang, Y. Zhou, S. Pang, D. Wang, H. Xu, Z. Liu, N.P. Padture, and G. Cui: Methylamine-gas-induced defect-healing behavior of CH3NH3PbI3 thin films for perovskite solar cells. Angew. Chem., Int. Ed. 54(33), 9705 (2015).

    Article  CAS  Google Scholar 

  69. Z. Xiao, Q. Dong, C. Bi, Y. Shao, Y. Yuan, and J. Huang: Solvent annealing of perovskite-induced crystal growth for photovoltaic-device efficiency enhancement. Adv. Mater. 26(37), 6503 (2014).

    Article  CAS  Google Scholar 

  70. H. Yu, X. Liu, Y. Xia, Q. Dong, K. Zhang, Z. Wang, Y. Zhou, B. Song, and Y. Li: Room-temperature mixed-solvent-vapor annealing for high performance perovskite solar cells. J. Mater. Chem. A 4(1), 321 (2016).

    Article  CAS  Google Scholar 

  71. J. You, Y. Yang, Z. Hong, T-B. Song, L. Meng, Y. Liu, C. Jiang, H. Zhou, W-H. Chang, G. Li, and Y. Yang: Moisture assisted perovskite film growth for high performance solar cells. Appl. Phys. Lett. 105(18), 183902 (2014).

    Article  CAS  Google Scholar 

  72. J.L. Urai: Water assisted dynamic recrystallization and weakening in polycrystalline bischofite. Tectonophysics 96(1–2), 125 (1983).

    Article  CAS  Google Scholar 

  73. M.L. Petrus, Y. Hu, D. Moia, P. Calado, A.M.A. Leguy, P.R.F. Barnes, and P. Docampo: The influence of water vapor on the stability and processing of hybrid perovskite solar cells made from non-stoichiometric precursor mixtures. Chemsuschem 9(18), 2699 (2016).

    Article  CAS  Google Scholar 

  74. W. Zhang, M. Saliba, D.T. Moore, S.K. Pathak, M.T. Hörantner, T. Stergiopoulos, S.D. Stranks, G.E. Eperon, J.A. Alexander-Webber, A. Abate, A. Sadhanala, S. Yao, Y. Chen, R.H. Friend, L.A. Estroff, U. Wiesner, and H.J. Snaith: Ultrasmooth organic–inorganic perovskite thin-film formation and crystallization for efficient planar heterojunction solar cells. Nat. Commun. 6, 6142 (2015).

    Article  CAS  Google Scholar 

  75. N.J. Jeon, J.H. Noh, Y.C. Kim, W.S. Yang, S. Ryu, and S.I. Seok: Solvent engineering for high-performance inorganic–organic hybrid perovskite solar cells. Nat. Mater. 13(9), 897 (2014).

    Article  CAS  Google Scholar 

  76. N.K. Noel, S.N. Habisreutinger, B. Wenger, M.T. Klug, M.T. Hörantner, M.B. Johnston, R.J. Nicholas, D.T. Moore, and H.J. Snaith: A low viscosity, low boiling point, clean solvent system for the rapid crystallisation of highly specular perovskite films. Energy Environ. Sci. 10, 145–152 (2017).

    Article  CAS  Google Scholar 

  77. P-W. Liang, C-Y. Liao, C-C. Chueh, F. Zuo, S.T. Williams, X-K. Xin, J. Lin, and A.K.Y. Jen: Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv. Mater. 26(22), 3748 (2014).

    Article  CAS  Google Scholar 

  78. C-C. Chueh, C-Y. Liao, F. Zuo, S.T. Williams, P-W. Liang, and A.K.Y. Jen: The roles of alkyl halide additives in enhancing perovskite solar cell performance. J. Mater. Chem. A 3(17), 9058 (2015).

    Article  CAS  Google Scholar 

  79. J.S. Manser, B. Reid, and P.V. Kamat: Evolution of organic–inorganic lead halide perovskite from solid-state iodoplumbate complexes. J. Phys. Chem. C 119(30), 17065 (2015).

    Article  CAS  Google Scholar 

  80. S.J. Yoon, K.G. Stamplecoskie, and P.V. Kamat: How lead halide complex chemistry dictates the composition of mixed halide perovskites. J. Phys. Chem. Lett. 7(7), 1368 (2016).

    Article  CAS  Google Scholar 

  81. W. Zhang, S. Pathak, N. Sakai, T. Stergiopoulos, P.K. Nayak, N.K. Noel, A.A. Haghighirad, V.M. Burlakov, D.W. deQuilettes, A. Sadhanala, W. Li, L. Wang, D.S. Ginger, R.H. Friend, and H.J. Snaith: Enhanced optoelectronic quality of perovskite thin films with hypophosphorous acid for planar heterojunction solar cells. Nat. Commun. 6, 10030 (2015).

    Article  CAS  Google Scholar 

  82. J.W. Jung, S.T. Williams, and A.K.Y. Jen: Low-temperature processed high-performance flexible perovskite solar cells via rationally optimized solvent washing treatments. RSC Adv. 4(108), 62971 (2014).

    Article  CAS  Google Scholar 

  83. N. Ahn, D-Y. Son, I-H. Jang, S.M. Kang, M. Choi, and N-G. Park: Highly reproducible perovskite solar cells with average efficiency of 18.3% and best efficiency of 19.7% fabricated via Lewis base adduct of lead(II) iodide. J. Am. Chem. Soc. 137(27), 8696 (2015).

    Article  CAS  Google Scholar 

  84. T. Miyadera, Y. Shibata, T. Koganezawa, T.N. Murakami, T. Sugita, N. Tanigaki, and M. Chikamatsu: Crystallization dynamics of organolead halide perovskite by real-time X-ray diffraction. Nano Lett. 15(8), 5630 (2015).

    Article  CAS  Google Scholar 

  85. B. Yang, J. Keum, O.S. Ovchinnikova, A. Belianinov, S. Chen, M-H. Du, I.N. Ivanov, C.M. Rouleau, D.B. Geohegan, and K. Xiao: Deciphering halogen competition in organometallic halide perovskite growth. J. Am. Chem. Soc. 138(15), 5028 (2016).

    Article  CAS  Google Scholar 

  86. G.E. Eperon, S.D. Stranks, C. Menelaou, M.B. Johnston, L.M. Herz, and H.J. Snaith: Formamidinium lead trihalide: A broadly tunable perovskite for efficient planar heterojunction solar cells. Energy Environ. Sci. 7(3), 982 (2014).

    Article  CAS  Google Scholar 

  87. T.M. Koh, K. Fu, Y. Fang, S. Chen, T.C. Sum, N. Mathews, S.G. Mhaisalkar, P.P. Boix, and T. Baikie: Formamidinium-containing metal-halide: An alternative material for near-IR absorption perovskite solar cells. J. Phys. Chem. C 118(30), 16458 (2014).

    Article  CAS  Google Scholar 

  88. J.A. Aguiar, S. Wozny, T.G. Holesinger, T. Aoki, M.K. Patel, M. Yang, J.J. Berry, M. Al-Jassim, W. Zhou, and K. Zhu: In situ investigation of the formation and metastability of formamidinium lead tri-iodide perovskite solar cells. Energy Environ. Sci. 9(7), 2372 (2016).

    Article  CAS  Google Scholar 

  89. M.R. Leyden, M.V. Lee, S.R. Raga, and Y. Qi: Large formamidinium lead trihalide perovskite solar cells using chemical vapor deposition with high reproducibility and tunable chlorine concentrations. J. Mater. Chem. A 3(31), 16097 (2015).

    Article  CAS  Google Scholar 

  90. J. Yang, B.D. Siempelkamp, D. Liu, and T.L. Kelly: Investigation of CH3NH3PbI3 degradation rates and mechanisms in controlled humidity environments using in situ techniques. ACS Nano 9(2), 1955 (2015).

    Article  CAS  Google Scholar 

  91. N. Aristidou, I. Sanchez-Molina, T. Chotchuangchutchaval, M. Brown, L. Martinez, T. Rath, and S.A. Haque: The role of oxygen in the degradation of methylammonium lead trihalide perovskite photoactive layers. Angew. Chem., Int. Ed. 54(28), 8208 (2015).

    Article  CAS  Google Scholar 

  92. D. Bryant, N. Aristidou, S. Pont, I. Sanchez-Molina, T. Chotchunangatchaval, S. Wheeler, J.R. Durrant, and S.A. Haque: Light and oxygen induced degradation limits the operational stability of methylammonium lead triiodide perovskite solar cells. Energy Environ. Sci. 9(5), 1655 (2016).

    Article  CAS  Google Scholar 

  93. A.J. Pearson, G.E. Eperon, P.E. Hopkinson, S.N. Habisreutinger, J.T-W. Wang, H.J. Snaith, and N.C. Greenham: Oxygen degradation in mesoporous Al2O3/CH3NH3PbI3− xClx perovskite solar cells: Kinetics and mechanisms. Adv. Energy Mater. 6(13), 1600014 (2016).

    Article  CAS  Google Scholar 

  94. Y. Huang, E.J. Kramer, A.J. Heeger, and G.C. Bazan: Bulk heterojunction solar cells: Morphology and performance relationships. Chem. Rev. 114(14), 7006 (2014).

    Article  CAS  Google Scholar 

  95. L. Lu, T. Zheng, Q. Wu, A.M. Schneider, D. Zhao, and L. Yu: Recent advances in bulk heterojunction polymer solar cells. Chem. Rev. 115(23), 12666 (2015).

    Article  CAS  Google Scholar 

  96. M.A. Brady, G.M. Su, and M.L. Chabinyc: Recent progress in the morphology of bulk heterojunction photovoltaics. Soft Matter 7(23), 11065 (2011).

    Article  CAS  Google Scholar 

  97. C.J. Bardeen: The structure and dynamics of molecular excitons. Annu. Rev. Phys. Chem. 65(1), 127 (2014).

    Article  CAS  Google Scholar 

  98. A.A. Bakulin, A. Rao, V.G. Pavelyev, P.H.M. van Loosdrecht, M.S. Pshenichnikov, D. Niedzialek, J. Cornil, D. Beljonne, and R.H. Friend: The role of driving energy and delocalized states for charge separation in organic semiconductors. Science 335(6074), 1340 (2012).

    Article  CAS  Google Scholar 

  99. S. Gelinas, A. Rao, A. Kumar, S.L. Smith, A.W. Chin, J. Clark, T.S. van der Poll, G.C. Bazan, and R.H. Friend: Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343(6170), 512 (2013).

    Article  CAS  Google Scholar 

  100. F.C. Jamieson, E.B. Domingo, T. McCarthy-Ward, M. Heeney, N. Stingelin, and J.R. Durrant: Fullerene crystallisation as a key driver of charge separation in polymer/fullerene bulk heterojunction solar cells. Chem. Sci. 3(2), 485 (2012).

    Article  CAS  Google Scholar 

  101. R.H. Friend, M. Phillips, A. Rao, M.W.B. Wilson, Z. Li, and C.R. McNeill: Excitons and charges at organic semiconductor heterojunctions. Faraday Discuss. 155, 339 (2012).

    Article  CAS  Google Scholar 

  102. T.M. Clarke and J.R. Durrant: Charge photogeneration in organic solar cells. Chem. Rev. 110(11), 6736 (2010).

    Article  CAS  Google Scholar 

  103. J.J.M. Halls, K. Pichler, R.H. Friend, S.C. Moratti, and A.B. Holmes: Exciton diffusion and dissociation in a poly(p-phenylenevinylene)/C60 heterojunction photovoltaic cell. Appl. Phys. Lett. 68(22), 3120 (1996).

    Article  CAS  Google Scholar 

  104. P.E. Shaw, A. Ruseckas, and I.D.W. Samuel: Exciton diffusion measurements in poly(3-hexylthiophene). Adv. Mater. 20(18), 3516 (2008).

    Article  CAS  Google Scholar 

  105. M.T. Dang, L. Hirsch, and G. Wantz: P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 23(31), 3597 (2011).

    Article  CAS  Google Scholar 

  106. T. Wang, A.D.F. Dunbar, P.A. Staniec, A.J. Pearson, P.E. Hopkinson, J.E. MacDonald, S. Lilliu, C. Pizzey, N.J. Terrill, A.M. Donald, A.J. Ryan, R.A.L. Jones, and D.G. Lidzey: The development of nanoscale morphology in polymer:fullerene photovoltaic blends during solvent casting. Soft Matter 6(17), 4128 (2010).

    Article  CAS  Google Scholar 

  107. B. Schmidt-Hansberg, M. Sanyal, M.F.G. Klein, M. Pfaff, N. Schnabel, S. Jaiser, A. Vorobiev, E. Müller, A. Colsmann, P. Scharfer, D. Gerthsen, U. Lemmer, E. Barrena, and W. Schabel: Moving through the phase diagram: Morphology formation in solution cast polymer–fullerene blend films for organic solar cells. ACS Nano 5(11), 8579 (2011).

    Article  CAS  Google Scholar 

  108. A.J. Pearson, T. Wang, A.D.F. Dunbar, H. Yi, D.C. Watters, D.M. Coles, P.A. Staniec, A. Iraqi, R.A.L. Jones, and D.G. Lidzey: Morphology development in amorphous polymer:fullerene photovoltaic blend films during solution casting. Adv. Funct. Mater. 24(5), 659 (2014).

    Article  CAS  Google Scholar 

  109. F. Liu, Y. Gu, C. Wang, W. Zhao, D. Chen, A.L. Briseno, and T.P. Russell: Efficient polymer solar cells based on a low band gap semi-crystalline DPP polymer–PCBM blends. Adv. Mater. 24(29), 3947 (2012).

    Article  CAS  Google Scholar 

  110. F. Liu, S. Ferdous, E. Schaible, A. Hexemer, M. Church, X. Ding, C. Wang, and T.P. Russell: Fast printing and in situ morphology observation of organic photovoltaics using slot-die coating. Adv. Mater. 27(5), 886 (2015).

    Article  CAS  Google Scholar 

  111. J.J. van Franeker, M. Turbiez, W. Li, M.M. Wienk, and R.A.J. Janssen: A real-time study of the benefits of co-solvents in polymer solar cell processing. Nat. Commun. 6, 6229 (2015).

    Article  CAS  Google Scholar 

  112. H-C. Liao, C-C. Ho, C-Y. Chang, M-H. Jao, S.B. Darling, and W-F. Su: Additives for morphology control in high-efficiency organic solar cells. Mater. Today 16(9), 326 (2013).

    Article  CAS  Google Scholar 

  113. J.K. Lee, W.L. Ma, C.J. Brabec, J. Yuen, J.S. Moon, J.Y. Kim, K. Lee, G.C. Bazan, and A.J. Heeger: Processing additives for improved efficiency from bulk heterojunction solar cells. J. Am. Chem. Soc. 130(11), 3619 (2008).

    Article  CAS  Google Scholar 

  114. F. Liu, W. Zhao, J.R. Tumbleston, C. Wang, Y. Gu, D. Wang, A.L. Briseno, H. Ade, and T.P. Russell: Understanding the morphology of PTB7:PCBM blends in organic photovoltaics. Adv. Energy Mater. 4(5), 1301377 (2014).

    Article  CAS  Google Scholar 

  115. B.J. Tremolet de Villers, K.A. O’Hara, D.P. Ostrowski, P.H. Biddle, S.E. Shaheen, M.L. Chabinyc, D.C. Olson, and N. Kopidakis: Removal of residual diiodooctane improves photostability of high-performance organic solar cell polymers. Chem. Mater. 28(3), 876 (2016).

    Article  CAS  Google Scholar 

  116. L.J. Richter, D.M. DeLongchamp, F.A. Bokel, S. Engmann, K.W. Chou, A. Amassian, E. Schaible, and A. Hexemer: In situ morphology studies of the mechanism for solution additive effects on the formation of bulk heterojunction films. Adv. Energy Mater. 5(3), 1400975 (2015).

    Article  CAS  Google Scholar 

  117. A.J. Pearson, T. Wang, R.A.L. Jones, D.G. Lidzey, P.A. Staniec, P.E. Hopkinson, and A.M. Donald: Rationalizing phase transitions with thermal annealing temperatures for P3HT:PCBM organic photovoltaic devices. Macromolecules 45(3), 1499 (2012).

    Article  CAS  Google Scholar 

  118. N.D. Treat, M.A. Brady, G. Smith, M.F. Toney, E.J. Kramer, C.J. Hawker, and M.L. Chabinyc: Interdiffusion of PCBM and P3HT reveals miscibility in a photovoltaically active blend. Adv. Energy Mater. 1(1), 82 (2011).

    Article  CAS  Google Scholar 

  119. K.W. Chou, B. Yan, R. Li, E.Q. Li, K. Zhao, D.H. Anjum, S. Alvarez, R. Gassaway, A. Biocca, S.T. Thoroddsen, A. Hexemer, and A. Amassian: Spin-cast bulk heterojunction solar cells: A dynamical investigation. Adv. Mater. 25(13), 1923 (2013).

    Article  CAS  Google Scholar 

  120. L.A. Perez, K.W. Chou, J.A. Love, T.S. van der Poll, D-M. Smilgies, T-Q. Nguyen, E.J. Kramer, A. Amassian, and G.C. Bazan: Solvent additive effects on small molecule crystallization in bulk heterojunction solar cells probed during spin casting. Adv. Mater. 25(44), 6380 (2013).

    Article  CAS  Google Scholar 

  121. S. Engmann, F.A. Bokel, A.A. Herzing, H.W. Ro, C. Girotto, B. Caputo, C.V. Hoven, E. Schaible, A. Hexemer, D.M. DeLongchamp, and L.J. Richter: Real-time X-ray scattering studies of film evolution in high performing small-molecule–fullerene organic solar cells. J. Mater. Chem. A 3(16), 8764 (2015).

    Article  CAS  Google Scholar 

  122. Y. Liu, J. Zhao, Z. Li, C. Mu, W. Ma, H. Hu, K. Jiang, H. Lin, H. Ade, and H. Yan: Aggregation and morphology control enables multiple cases of high-efficiency polymer solar cells. Nat. Commun. 5, 5293 (2014).

    Article  CAS  Google Scholar 

  123. H.W. Ro, J.M. Downing, S. Engmann, A.A. Herzing, D.M. DeLongchamp, L.J. Richter, S. Mukherjee, H. Ade, M. Abdelsamie, L.K. Jagadamma, A. Amassian, Y. Liu, and H. Yan: Morphology changes upon scaling a high-efficiency, solution-processed solar cell. Energy Environ. Sci. 9(9), 2835 (2016).

    Article  CAS  Google Scholar 

  124. K. Zhao, H. Hu, E. Spada, L.K. Jagadamma, B. Yan, M. Abdelsamie, Y. Yang, L. Yu, R. Munir, R. Li, G.O.N. Ndjawa, and A. Amassian: Highly efficient polymer solar cells with printed photoactive layer: Rational process transfer from spin-coating. J. Mater. Chem. A 4(41), 16036 (2016).

    Article  CAS  Google Scholar 

  125. B.A. Collins, E. Gann, L. Guignard, X. He, C.R. McNeill, and H. Ade: Molecular miscibility of polymer–fullerene blends. J. Phys. Chem. Lett. 1(21), 3160 (2010).

    Article  CAS  Google Scholar 

  126. T. Wang, A.J. Pearson, D.G. Lidzey, and R.A.L. Jones: Evolution of structure, optoelectronic properties, and device performance of polythiophene: Fullerene solar cells during thermal annealing. Adv. Funct. Mater. 21(8), 1383 (2011).

    Article  CAS  Google Scholar 

  127. A. Sharenko, M. Kuik, M.F. Toney, and T-Q. Nguyen: Crystallization-induced phase separation in solution-processed small molecule bulk heterojunction organic solar cells. Adv. Funct. Mater. 24(23), 3543 (2014).

    Article  CAS  Google Scholar 

  128. S. Engmann, H.W. Ro, A. Herzing, C.R. Snyder, L.J. Richter, P.B. Geraghty, and D.J. Jones: Film morphology evolution during solvent vapor annealing of highly efficient small molecule donor/acceptor blends. J. Mater. Chem. A 4(40), 15511 (2016).

    Article  CAS  Google Scholar 

  129. E. Verploegen, C.E. Miller, K. Schmidt, Z. Bao, and M.F. Toney: Manipulating the morphology of P3HT–PCBM bulk heterojunction blends with solvent vapor annealing. Chem. Mater. 24(20), 3923 (2012).

    Article  CAS  Google Scholar 

  130. C.J. Schaffer, C.M. Palumbiny, M.A. Niedermeier, C. Jendrzejewski, G. Santoro, S.V. Roth, and P. Müller-Buschbaum: A direct evidence of morphological degradation on a nanometer scale in polymer solar cells. Adv. Mater. 25(46), 6760 (2013).

    Article  CAS  Google Scholar 

  131. W. Wang, C.J. Schaffer, L. Song, V. Körstgens, S. Pröller, E.D. Indari, T. Wang, A. Abdelsamie, S. Bernstorff, and P. Müller-Buschbaum: In operando morphology investigation of inverted bulk heterojunction organic solar cells by GISAXS. J. Mater. Chem. A 3(16), 8324 (2015).

    Article  CAS  Google Scholar 

  132. P.E. Hopkinson, P.A. Staniec, A.J. Pearson, A.D.F. Dunbar, T. Wang, A.J. Ryan, R.A.L. Jones, D.G. Lidzey, and A.M. Donald: A phase diagram of the P3HT:PCBM organic photovoltaic system: Implications for device processing and performance. Macromolecules 44(8), 2908 (2011).

    Article  CAS  Google Scholar 

  133. Z. Li, H.C. Wong, Z. Huang, H. Zhong, C.H. Tan, W.C. Tsoi, J.S. Kim, J.R. Durrant, and J.T. Cabral: Performance enhancement of fullerene-based solar cells by light processing. Nat. Commun. 4, 2227 (2013).

    Article  CAS  Google Scholar 

  134. S.Y. Leblebici, L. Leppert, Y. Li, S.E. Reyes-Lillo, S. Wickenburg, E. Wong, J. Lee, M. Melli, D. Ziegler, D.K. Angell, D.F. Ogletree, P.D. Ashby, F.M. Toma, J.B. Neaton, I.D. Sharp, and A. Weber-Bargioni: Facet-dependent photovoltaic efficiency variations in single grains of hybrid halide perovskite. Nat. Energy 1(8), 16093 (2016).

    Article  CAS  Google Scholar 

  135. S. Lilliu, T.G. Dane, M. Alsari, J. Griffin, A.T. Barrows, M.S. Dahlem, R.H. Friend, D.G. Lidzey, and J.E. Macdonald: Mapping morphological and structural properties of lead halide perovskites by scanning nanofocus XRD. Adv. Funct. Mater. 26(45), 8221 (2016).

    Article  CAS  Google Scholar 

  136. X. Li, D. Bi, C. Yi, J.D. Decoppet, J. Luo, S.M. Zakeeruddin, A. Hagfeldt, and M. Gratzel: A vacuum flash-assisted solution process for high-efficiency large-area perovskite solar cells. Science 353(6294), 58 (2016).

    Article  CAS  Google Scholar 

  137. W. Zhao, D. Qian, S. Zhang, S. Li, O. Inganäs, F. Gao, and J. Hou: Fullerene-free polymer solar cells with over 11% efficiency and excellent thermal stability. Adv. Mater. 28(23), 4734 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The author acknowledges support from the EPSRC through the grant EP/M024873/1 “Singlet Fission Photon Multipliers—Adding Efficiency to Silicon Solar Cells”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew J. Pearson.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pearson, A.J. Structure formation and evolution in semiconductor films for perovskite and organic photovoltaics. Journal of Materials Research 32, 1798–1824 (2017). https://doi.org/10.1557/jmr.2017.87

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.87

Navigation