Skip to main content
Log in

Adhesion strength and nanomechanical characterization of ZnO thin films

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The present study was focused to investigate mechanical properties of ZnO thin films deposited on fused quartz substrates at different sputtering deposition pressures (5, 10, 15, and 20 mTorr) using DC sputtering. The crystallinity and microstructure show a marked influence on the mechanical properties of ZnO thin films. The structural evolution of the thin films is in (002) plane and influenced by deposition pressure. The intensity of (002) peak of the films rises initially and decreases with further increasing deposition pressure. The mechanical properties such as hardness, Young’s modulus, and coefficient of friction of ZnO thin films were measured using three-sided pyramidal Berkovich nanoindentation. The adhesion strength of thin films was measured by using scratch test under ramp loading. Load–displacement profile of thin films at continuous indentation cycle without any discontinuity revealed no fracture, cracking event, and defects, which is a consequence of dense microstructure and good adherence of films to the substrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. D. Wang and G.P. Bierwagen: Sol–gel coatings on metals for corrosion protection. Prog. Org. Coat. 64(4), 327 (2009).

    Article  CAS  Google Scholar 

  2. A.A.M. Ralib, A.N. Nordin, N.A. Malik, R. Othman, A.Z. Alam, S. Khan, O. Mortada, A. Crunteanu, M. Chatras, and J.C. Orlianges: A study on controllable aluminium doped zinc oxide patterning by chemical etching for MEMS application. Microsys. Technol. (2016), doi: https://doi.org/10.1007/s00542-015-2783-1.

  3. L.B. Freund and S. Suresh: Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, U.K., 2004).

    Book  Google Scholar 

  4. R. Daniel, A. Zeilinger, T. Schöberl, B. Sartory, C. Mitterer, and J. Keckes: Microstructure-controlled depth gradients of mechanical properties in thin nanocrystalline films: Towards structure-property gradient functionalization. J. Appl. Phys. 117(23), 235301 (2015).

    Article  CAS  Google Scholar 

  5. P. Kelly and R. Arnell: Magnetron sputtering: A review of recent developments and applications. Vacuum 56(3), 159 (2000).

    Article  CAS  Google Scholar 

  6. M. Ohring: Materials Science of Thin Films (Academic Press, San Diego, USA, 2001).

    Google Scholar 

  7. J-E. Lee, H-J. Kim, and D-E. Kim: Assessment of adhesion between thin film and silicon based on a scratch test. J. Mech. Sci. Technol. 24(1), 97 (2010).

    Article  Google Scholar 

  8. W.C. Oliver and G.M. Pharr: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564 (1992).

    Article  CAS  Google Scholar 

  9. Q. Tian and H. Liu: Electrophoretic deposition and characterization of nanocomposites and nanoparticles on magnesium substrates. Nanotechnology 26(17), 175102 (2015).

    Article  CAS  Google Scholar 

  10. J. Chen and S. Bull: Approaches to investigate delamination and interfacial toughness in coated systems: An overview. J. Phys. D: Appl. Phys. 44(3), 034001 (2010).

    Article  CAS  Google Scholar 

  11. L. Znaidi: Sol–gel-deposited ZnO thin films: A review. Mater. Sci. Eng., B 174(1–3), 18 (2010).

    Article  CAS  Google Scholar 

  12. Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M. Reshchikov, S. Doğan, V. Avrutin, S-J. Cho, and H. Morkoc: A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 041301 (2005).

    Article  CAS  Google Scholar 

  13. C.F. Klingshirn, A. Waag, A. Hoffmann, and J. Geurts: Zinc Oxide: From Fundamental Properties Towards Novel Applications (Springer Science & Business Media, New York, USA, 2010).

    Book  Google Scholar 

  14. S. Lu, Q. Liao, J. Qi, S. Liu, Y. Liu, Q. Liang, G. Zhang, and Y. Zhang: The enhanced performance of piezoelectric nanogenerator via suppressing screening effect with Au particles/ZnO nanoarrays Schottky junction. Nano Res. 9(2), 372 (2016).

    Article  CAS  Google Scholar 

  15. J. Hong, N. Matsushita, and K. Kim: Effect of dopants and thermal treatment on properties of Ga–Al–ZnO thin films fabricated by hetero targets sputtering system. Thin Solid Films 531, 238 (2013).

    Article  CAS  Google Scholar 

  16. V. Coleman, J. Bradby, C. Jagadish, P. Munroe, Y. Heo, S. Pearton, D. Norton, M. Inoue, and M. Yano: Mechanical properties of ZnO epitaxial layers grown on a- and c-axis sapphire. Appl. Phys. Lett. 86(20), 203105 (2005).

    Article  CAS  Google Scholar 

  17. C-m. Lai, K-m. Lin, and S. Rosmaidah: Effect of annealing temperature on the quality of Al-doped ZnO thin films prepared by sol–gel method. J. Sol-Gel Sci. Technol. 61(1), 249 (2012).

    Article  CAS  Google Scholar 

  18. S-R. Jian: Pop-in effects and dislocation nucleation of c-plane single-crystal ZnO by Berkovich nanoindentation. J. Alloys Compd. 644, 54 (2015).

    Article  CAS  Google Scholar 

  19. W-H. Yau, P-C. Tseng, H-C. Wen, C-H. Tsai, and W-C. Chou: Luminescence properties of mechanically nanoindented ZnSe. Microelectron. Reliab. 51(5), 931 (2011).

    Article  CAS  Google Scholar 

  20. N. Tayebi, A.A. Polycarpou, and T.F. Conry: Effects of substrate on determination of hardness of thin films by nanoscratch and nanoindentation techniques. J. Mater. Res. 19(6), 1791 (2004).

    Article  CAS  Google Scholar 

  21. Y-C. Huang and S-Y. Chang: Substrate effect on mechanical characterizations of aluminum-doped zinc oxide transparent conducting films. Surf. Coat. Technol. 204(20), 3147 (2010).

    Article  CAS  Google Scholar 

  22. L. Sagalowicz and G.R. Fox: Planar defects in ZnO thin films deposited on optical fibers and flat substrates. J. Mater. Res. 14(5), 1876 (1999).

    Article  CAS  Google Scholar 

  23. A. Stokes and A. Wilson: The diffraction of X-rays by distorted crystal aggregates-I. Proc. Phys. Soc., London, Sect. A 56(3), 174 (1944).

    Article  CAS  Google Scholar 

  24. G. Williamson and R. Smallman, III: Dislocation densities in some annealed and cold-worked metals from measurements on the X-ray Debye-Scherrer spectrum. Philos. Mag. 1(1), 34 (1956).

    Article  CAS  Google Scholar 

  25. F. Sun and F.H. Froes: Synthesis and characterization of mechanical-alloyed Ti–x Mg alloys. J. Alloys Compd. 340(1–2), 220 (2002).

    Article  CAS  Google Scholar 

  26. W. Ni, Y-T. Cheng, M. Lukitsch, A.M. Weiner, L.C. Lev, and D.S. Grummon: Novel layered tribological coatings using a superelastic NiTi interlayer. Wear 259(7), 842 (2005).

    Article  CAS  Google Scholar 

  27. L. Kolodziejczyk, W. Szymanski, D. Batory, and A. Jedrzejczak: Nanotribology of silver and silicon doped carbon coatings. Diamond Relat. Mater. 67, 8 (2016).

    Article  CAS  Google Scholar 

  28. A. C. Fischer-Cripps: Nanoindentation (Springer, New York, 2011).

    Book  Google Scholar 

  29. D. Bao, H. Gu, and A. Kuang: Sol–gel-derived c-axis oriented ZnO thin films. Thin Solid Films 312(1), 37 (1998).

    Article  CAS  Google Scholar 

  30. M.S. Kim, K.G. Yim, M.Y. Cho, J.Y. Leem, D.Y. Lee, J.S. Kim, J.S. Kim, and J.S. Son: Post-annealing effects on the structural and the optical properties of ZnO thin films grown by using the hydrothermal method. J. Korean. Phys. Soc. 58(3), 515 (2011).

    Article  CAS  Google Scholar 

  31. A. Van der Drift: Evolutionary selection, a principle governing growth orientation in vapour-deposited layers. Philips Res. Rep. 22(3), 267 (1967).

    Google Scholar 

  32. N. Fujimura, T. Nishihara, S. Goto, J. Xu, and T. Ito: Control of preferred orientation for ZnOx films: Control of self-texture. J. Cryst. Growth 130(1), 269 (1993).

    Article  CAS  Google Scholar 

  33. C.R. Aita, A.J. Purdes, K.L. Lad, and P.D. Funkenbusch: The effect of O2 on reactively sputtered zinc oxide. J. Appl. Phys. 51(10), 5533 (1980).

    Article  CAS  Google Scholar 

  34. V. Dave, P. Dubey, H. Gupta, and R. Chandra: Influence of sputtering pressure on the structural, optical and hydrophobic properties of sputtered deposited HfO2 coatings. Thin Solid Films 549, 2 (2013).

    Article  CAS  Google Scholar 

  35. L-P. Peng, A-L. He, L. Fang, and X-F. Yang: Structure and properties of indium-doped ZnO films prepared by RF magnetron sputtering under different pressures. Rare Met. (2015), doi: https://doi.org/10.1007/s12598-015-0661-8.

  36. V.A. Coleman and C. Jagadish: Basic Properties and Applications of ZnO. In Zinc Oxide Bulk, Thin Films and Nanostructures (Elsevier Science Ltd., Oxford, 2006); ch. 1.

    Google Scholar 

  37. T. Sung, J. Huang, and H. Chen: Mechanical response of polar/non-polar ZnO under low dimensional stress. Appl. Phys. Lett. 102(24), 241901 (2013).

    Article  CAS  Google Scholar 

  38. L-Y. Lin, M-C. Jeong, D-E. Kim, and J-M. Myoung: Micro/nanomechanical properties of aluminum-doped zinc oxide films prepared by radio frequency magnetron sputtering. Surf. Coat. Technol. 201(6), 2547 (2006).

    Article  CAS  Google Scholar 

  39. T.K. Roy: Assessing hardness and fracture toughness in sintered zinc oxide ceramics through indentation technique. Mater. Sci. Eng., A 640, 267 (2015).

    Article  CAS  Google Scholar 

  40. D. Maharaj and B. Bhushan: Scale effects of nanomechanical properties and deformation behavior of Au nanoparticle and thin film using depth sensing nanoindentation. Beilstein J. Nanotechnol. 5(1), 822 (2014).

    Article  CAS  Google Scholar 

  41. S. Bull: Nanoindentation of coatings. J. Phys. D: Appl. Phys. 38(24), R393 (2005).

    Article  CAS  Google Scholar 

  42. G. Patriarche, F. Glas, G. Le Roux, L. Largeau, A. Mereuta, A. Ougazzaden, and J. Benchimol: TEM study of the morphological and compositional instabilities of InGaAsP epitaxial structures. J. Cryst. Growth 221(1), 12 (2000).

    Article  CAS  Google Scholar 

  43. R. Navamathavan, K-K. Kim, D-K. Hwang, S-J. Park, J-H. Hahn, T.G. Lee, and G-S. Kim: A nanoindentation study of the mechanical properties of ZnO thin films on (0001) sapphire. Appl. Surf. Sci. 253(2), 464 (2006).

    Article  CAS  Google Scholar 

  44. C. Schuh, T. Nieh, and Y. Kawamura: Rate dependence of serrated flow during nanoindentation of a bulk metallic glass. J. Mater. Res. 17(07), 1651 (2002).

    Article  CAS  Google Scholar 

  45. D.K. Misra, S.W. Sohn, W.T. Kim, and D.H. Kim: Rate-dependent serrated flow and plastic deformation in Ti45Zr16Be20Cu10Ni9 bulk amorphous alloy during nanoindentation. Sci. Technol. Adv. Mater. 9(4), 45004 (2016).

    Article  CAS  Google Scholar 

  46. S. Kucheyev, J. Bradby, J. Williams, C. Jagadish, and M. Swain: Mechanical deformation of single-crystal ZnO. Appl. Phys. Lett. 80(6), 956 (2002).

    Article  CAS  Google Scholar 

  47. T-H. Fang, W-J. Chang, and C-M. Lin: Nanoindentation characterization of ZnO thin films. Mater. Sci. Eng., A 452, 715 (2007).

    Article  CAS  Google Scholar 

  48. J. Li, K.J. Van Vliet, T. Zhu, S. Yip, and S. Suresh: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418(6895), 307 (2002).

    Article  CAS  Google Scholar 

  49. A.J. Gayle and R.F. Cook: Mapping viscoelastic and plastic properties of polymers and polymer-nanotube composites using instrumented indentation. J. Mater. Res. 31(15), 2347 (2016).

    Article  CAS  Google Scholar 

  50. J. Musil: Hard nanocomposite coatings: Thermal stability, oxidation resistance and toughness. Surf. Coat. Technol. 207, 50 (2012).

    Article  CAS  Google Scholar 

  51. M. Blees, G. Winkelman, A. Balkenende, and J. Den Toonder: The effect of friction on scratch adhesion testing: Application to a sol–gel coating on polypropylene. Thin Solid Films 359(1), 1 (2000).

    Article  CAS  Google Scholar 

  52. N. Deyneka-Dupriez, U. Herr, H. Fecht, A. Pfrang, T. Schimmel, B. Reznik, and D. Gerthsen: Interfacial adhesion and friction of pyrolytic carbon thin films on silicon substrates. J. Mater. Res. 23(10), 2749 (2008).

    Article  CAS  Google Scholar 

  53. S. Zhang, D. Sun, Y. Fu, and H. Du: Effect of sputtering target power on microstructure and mechanical properties of nanocomposite nc-TiN/a-SiNx thin films. Thin Solid Films 447, 462 (2004).

    Article  Google Scholar 

  54. P. Benjamin and C. Weaver: Measurement of adhesion of thin films. Proc. R. Soc. London, Ser. A 254(1277), 163 (1960).

    Article  CAS  Google Scholar 

  55. S-R. Jian, I-J. Teng, P-F. Yang, Y-S. Lai, J-M. Lu, J-G. Chang, and S-P. Ju: Surface morphological and nanomechanical properties of PLD-derived ZnO thin films. Nanoscale Res. Lett. 3(5), 186 (2008).

    Article  CAS  Google Scholar 

  56. B. Bhushan and X. Li: Micromechanical and tribological characterization of doped single-crystal silicon and polysilicon films for microelectromechanical systems devices. J. Mater. Res. 12(1), 54 (1997).

    Article  CAS  Google Scholar 

  57. J.A. Thornton: The microstructure of sputter-deposited coatings. J. Vac. Sci. Technol., A 4(6), 3059 (1986).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors would like to thank Prof. Ramesh Chandra for providing sputtering facility at Institute Instrumentation Center, IIT Roorkee, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rengaswamy Jayaganthan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhardwaj, V., Chowdhury, R. & Jayaganthan, R. Adhesion strength and nanomechanical characterization of ZnO thin films. Journal of Materials Research 32, 1432–1443 (2017). https://doi.org/10.1557/jmr.2017.85

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.85

Navigation