Skip to main content
Log in

Research progress of graphene-based microwave absorbing materials in the last decade

  • Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

With the rapid development of electronic information and technology, especially the explosive advance of novel electronic devices, ultra-wideband radar detector and satellite communication, the elimination of adverse electromagnetic waves (EWs) effectively is very necessary both for electronic safety and national defense security. As one of the important material basis for controlling adverse EW pollution, compatibility, shielding, and stealth capability of weaponry, microwave absorbing materials has long been an area of intense research activity. Graphene-based materials have attracted great interests for microwave absorption in recent years due to the unique structure and physicochemical properties of graphene, such as high specific surface area, ultrathin thickness, large interface, optical transmittance, and tunable conductive properties, etc. In this paper, the properties and absorption behavior of different kinds of microwave absorbing materials based on graphene were reviewed and discussed in detail. In addition, the perspective of the current challenges and key issues for achieving better microwave absorption performance of the graphene-based materials are provided.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. Z. Liu, G. Bai, Y. Huang, F. Li, Y. Ma, T. Guo, X. He, X. Lin, H. Gao, and Y. Chen: Microwave absorption of single-walled carbon nanotubes/soluble cross-linked polyurethane composites. J. Phys. Chem. C 111(37), 13696 (2007).

    Article  CAS  Google Scholar 

  2. T. Liu, Y. Pang, M. Zhu, and S. Kobayashi: Microporous Co@CoO nanoparticles with superior microwave absorption properties. Nanoscale 6(4), 2447 (2014).

    Article  CAS  Google Scholar 

  3. L. Wang, Y. Huang, X. Sun, H. Huang, P. Liu, M. Zong, and Y. Wang: Synthesis and microwave absorption enhancement of graphene@Fe3O4@SiO2@NiO nanosheet hierarchical structures. Nanoscale 6(6), 3157 (2014).

    Article  CAS  Google Scholar 

  4. X. Yin, L. Kong, L. Zhang, L. Cheng, N. Travitzky, and P. Greil: Electromagnetic properties of Si–C–N based ceramics and composites. Int. Mater. Rev. 59(6), 326 (2014).

    Article  CAS  Google Scholar 

  5. D.X. Yan, H. Pang, B. Li, R. Vajtai, L. Xu, P.G. Ren, J.H. Wang, and Z.M. Li: Structured reduced graphene oxide/polymer composites for ultra-efficient electromagnetic interference shielding. Adv. Funct. Mater. 25(4), 559 (2015).

    Article  CAS  Google Scholar 

  6. D. Sun, Q. Zou, Y. Wang, Y. Wang, W. Jiang, and F. Li: Controllable synthesis of porous Fe3O4@ZnO sphere decorated graphene for extraordinary electromagnetic wave absorption. Nanoscale 6(12), 6557 (2014).

    Article  CAS  Google Scholar 

  7. X-J. Zhang, G-S. Wang, W-Q. Cao, Y-Z. Wei, J-F. Liang, L. Guo, and M-S. Cao: Enhanced microwave absorption property of reduced graphene oxide (RGO)–MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces 6(10), 7471 (2014).

    Article  CAS  Google Scholar 

  8. X. Zhao, Z. Zhang, L. Wang, K. Xi, Q. Cao, D. Wang, Y. Yang, and Y. Du: Excellent microwave absorption property of graphene-coated Fe nanocomposites. Sci. Rep. 3, 3421 (2013).

    Article  Google Scholar 

  9. M-S. Cao, J. Yang, W-L. Song, D-Q. Zhang, B. Wen, H-B. Jin, Z-L. Hou, and J. Yuan: Ferroferric oxide/multiwalled carbon nanotube vs. polyaniline/ferroferric oxide/multiwalled carbon nanotube multiheterostructures for highly effective microwave absorption. ACS Appl. Mater. Interfaces 4(12), 6949 (2012).

    Article  CAS  Google Scholar 

  10. H-J. Yang, W-Q. Cao, D-Q. Zhang, T-J. Su, H-L. Shi, W-Z. Wang, J. Yuan, and M-S. Cao: NiO hierarchical nanorings on SiC: Enhancing relaxation to tune microwave absorption at elevated temperature. ACS Appl. Mater. Interfaces 7(13), 7073 (2015).

    Article  CAS  Google Scholar 

  11. M-M. Lu, W-Q. Cao, H-L. Shi, X-Y. Fang, J. Yang, Z-L. Hou, H-B. Jin, W-Z. Wang, J. Yuan, and M-S. Cao: Multi-wall carbon nanotubes decorated with ZnO nanocrystals: Mild solution-process synthesis and highly efficient microwave absorption properties at elevated temperature. J. Mater. Chem. A 2(27), 10540 (2014).

    Article  CAS  Google Scholar 

  12. X-X. Wang, M-M. Lu, W-Q. Cao, B. Wen, and M-S. Cao: Fabrication, microstructure and microwave absorption of multi-walled carbon nanotube decorated with CdS nanocrystal. Mater. Lett. 125, 107 (2014).

    Article  CAS  Google Scholar 

  13. B. Wen, X. Wang, W. Cao, H. Shi, M. Lu, G. Wang, H. Jin, W. Wang, J. Yuan, and M. Cao: Reduced graphene oxides: The thinnest and most lightweight materials with highly efficient microwave attenuation performances of the carbon world. Nanoscale 6(11), 5754 (2014).

    Article  CAS  Google Scholar 

  14. J. Liu, W-Q. Cao, H-B. Jin, J. Yuan, D-Q. Zhang, and M-S. Cao: Enhanced permittivity and multi-region microwave absorption of nanoneedle-like ZnO in the X-band at elevated temperature. J. Mater. Chem. C 3(18), 4670 (2015).

    Article  CAS  Google Scholar 

  15. B. Wen, M. Cao, M. Lu, W. Cao, H. Shi, J. Liu, X. Wang, H. Jin, X. Fang, and W. Wang: Reduced graphene oxides: Light-weight and high-efficiency electromagnetic interference shielding at elevated temperatures. Adv. Mater. 26(21), 3484 (2014).

    Article  CAS  Google Scholar 

  16. Z. Fan, G. Luo, Z. Zhang, L. Zhou, and F. Wei: Electromagnetic and microwave absorbing properties of multi-walled carbon nanotubes/polymer composites. Mater. Sci. Eng., B 132(1), 85 (2006).

    Article  CAS  Google Scholar 

  17. J-H. Oh, K-S. Oh, C-G. Kim, and C-S. Hong: Design of radar absorbing structures using glass/epoxy composite containing carbon black in X-band frequency ranges. Composites, Part B 35(1), 49 (2004).

    Article  CAS  Google Scholar 

  18. C. Wang, X. Han, P. Xu, X. Zhang, Y. Du, S. Hu, J. Wang, and X. Wang: The electromagnetic property of chemically reduced graphene oxide and its application as microwave absorbing material. Appl. Phys. Lett. 98(7), 072906 (2011).

    Article  CAS  Google Scholar 

  19. Y. Fan, H. Yang, M. Li, and G. Zou: Evaluation of the microwave absorption property of flake graphite. Mater. Chem. Phys. 115(2), 696 (2009).

    Article  CAS  Google Scholar 

  20. M-S. Cao, W-L. Song, Z-L. Hou, B. Wen, and J. Yuan: The effects of temperature and frequency on the dielectric properties, electromagnetic interference shielding and microwave-absorption of short carbon fiber/silica composites. Carbon 48(3), 788 (2010).

    Article  CAS  Google Scholar 

  21. C.N.R. Rao, A.K. Sood, K.S. Subrahmanyam, and A. Govindaraj: Graphene: The new two-dimensional nanomaterial. Angew. Chem., Int. Ed. 48(42), 7752 (2009).

    Article  CAS  Google Scholar 

  22. Y. Zhu, S. Murali, W. Cai, X. Li, J.W. Suk, J.R. Potts, and R.S. Ruoff: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22(35), 3906 (2010).

    Article  CAS  Google Scholar 

  23. J. Fang, W. Zha, M. Kang, S. Lu, L. Cui, and S. Li: Microwave absorption response of nickel/graphene nanocomposites prepared by electrodeposition. J. Mater. Sci. 48, 8060 (2013).

    Article  CAS  Google Scholar 

  24. V. Georgakilas, M. Otyepka, A.B. Bourlinos, V. Chandra, N. Kim, K.C. Kemp, P. Hobza, R. Zboril, and K.S. Kim: Functionalization of graphene: Covalent and non-covalent approaches, derivatives and applications. Chem. Rev. 112(11), 6156 (2012).

    Article  CAS  Google Scholar 

  25. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, and R.S. Ruoff: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558 (2007).

    Article  CAS  Google Scholar 

  26. G. Wang, M. Zhang, S. Liu, X. Xie, G. Ding, Y. Wang, P.K. Chu, H. Gao, W. Ren, Q. Yuan, P. Zhang, X. Wang, and Z. Di: Synthesis of layer-tunable graphene: A combined kinetic implantation and thermal ejection approach. Adv. Funct. Mater. 25(24), 3666 (2015).

    Article  CAS  Google Scholar 

  27. P. Avouris, Z. Chen, and V. Perebeinos: Carbon-based electronics. Nat. Nanotechnol. 2(10), 605 (2007).

    Article  CAS  Google Scholar 

  28. H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, and Y. Chen: Evaluation of solution-processed reduced graphene oxide films as transparent conductors. ACS Nano 2(3), 463 (2008).

    Article  CAS  Google Scholar 

  29. X. Li, G. Zhang, X. Bai, X. Sun, X. Wang, E. Wang, and H. Dai: Highly conducting graphene sheets and Langmuir–Blodgett films. Nat. Nanotechnol. 3(9), 538 (2008).

    Article  CAS  Google Scholar 

  30. Z. Yin, S. Sun, T. Salim, S. Wu, X. Huang, Q. He, Y.M. Lam, and H. Zhang: Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 4(9), 5263 (2010).

    Article  CAS  Google Scholar 

  31. S. Park, J. An, J.W. Suk, and R.S. Ruoff: Graphene-based actuators. Small 6(2), 210 (2010).

    Article  CAS  Google Scholar 

  32. Q. He, H.G. Sudibya, Z. Yin, S. Wu, H. Li, F. Boey, W. Huang, P. Chen, and H. Zhang: Centimeter-long and large-scale micropatterns of reduced graphene oxide films: Fabrication and sensing applications. ACS Nano 4(6), 3201 (2010).

    Article  CAS  Google Scholar 

  33. B. Li, X. Cao, H.G. Ong, J.W. Cheah, X. Zhou, Z. Yin, H. Li, J. Wang, F. Boey, and W. Huang: All-carbon electronic devices fabricated by directly grown single-walled carbon nanotubes on reduced graphene oxide electrodes. Adv. Mater. 22(28), 3058 (2010).

    Article  CAS  Google Scholar 

  34. M. Pumera: Graphene-based nanomaterials and their electrochemistry. Chem. Soc. Rev. 39(11), 4146 (2010).

    Article  CAS  Google Scholar 

  35. H. Zhu, Y. Ding, A. Wang, X. Sun, X-C. Wu, and J-J. Zhu: A simple strategy based on upconversion nanoparticles for a fluorescent resonant energy transfer biosensor. J. Mater. Chem. B 3, 458 (2015).

    Article  CAS  Google Scholar 

  36. C. Zhu, S. Yang, G. Wang, R. Mo, P. He, J. Sun, Z. Di, N. Yuan, J. Ding, and G. Ding: Negative induction effect of graphite N on graphene quantum dots: Tunable band gap photoluminescence. J. Mater. Chem. C 3(34), 8810 (2015).

    Article  CAS  Google Scholar 

  37. Z. Chen, C. Xu, C. Ma, W. Ren, and H.M. Cheng: Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296 (2013).

    Article  CAS  Google Scholar 

  38. M. Han, X. Yin, L. Kong, M. Li, W. Duan, L. Zhang, and L. Cheng: Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2(39), 16403 (2014).

    Article  CAS  Google Scholar 

  39. K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, and Y. Svirko: Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Sci. Rep. 4(7191), 1 (2014).

    Google Scholar 

  40. B. Shen, W. Zhai, and W. Zheng: Ultrathin flexible graphene film: An excellent thermal conducting material with efficient EMI shielding. Adv. Funct. Mater. 24(28), 4542 (2014).

    Article  CAS  Google Scholar 

  41. L. Kong, X. Yin, X. Yuan, Y. Zhang, X. Liu, L. Cheng, and L. Zhang: Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon 73, 185 (2014).

    Article  CAS  Google Scholar 

  42. X. Bai, Y. Zhai, and Y. Zhang: Green approach to prepare graphene-based composites with high microwave absorption capacity. J. Phys. Chem. C 115(23), 11673 (2011).

    Article  CAS  Google Scholar 

  43. Y-L. Ren, H-Y. Wu, M-M. Lu, Y-J. Chen, C-L. Zhu, P. Gao, M-S. Cao, C-Y. Li, and Q-Y. Ouyang: Quaternary nanocomposites consisting of graphene, Fe3O4@Fe core@shell, and ZnO nanoparticles: Synthesis and excellent electromagnetic absorption properties. ACS Appl. Mater. Interfaces 4(12), 6436 (2012).

    Article  CAS  Google Scholar 

  44. Z. Durmus, A. Durmus, and H. Kavas: Synthesis and characterization of structural and magnetic properties of graphene/hard ferrite nanocomposites as microwave-absorbing material. J. Mater. Sci. 50(3), 1201 (2014).

    Article  CAS  Google Scholar 

  45. P. Bhattacharya and C.K. Das: Investigation on microwave absorption capacity of nanocomposites based on metal oxides and graphene. J. Mater. Sci.: Mater. Electron. 24(6), 1927 (2012).

    Google Scholar 

  46. O. Balci, E.O. Polat, N. Kakenov, and C. Kocabas: Graphene-enabled electrically switchable radar-absorbing surfaces. Nat. Commun. 6, 6628 (2015).

    Article  CAS  Google Scholar 

  47. B. Wu, H.M. Tuncer, M. Naeem, B. Yang, M.T. Cole, W.I. Milne, and Y. Hao: Experimental demonstration of a transparent graphene millimetre wave absorber with 28% fractional bandwidth at 140 GHz. Sci. Rep. 4, 4130 (2014).

    Article  CAS  Google Scholar 

  48. P. Saini and M. Arora: Microwave absorption and EMI shielding behaviour of nanocomposites based on intrinsically conducting polymers, graphene and carbon nanotubes. New Polymers for Special Applications 3, 71 (2012).

    Google Scholar 

  49. X. Huang, Z. Hu, and P. Liu: Graphene based tunable fractal Hilbert curve array broadband radar absorbing screen for radar cross section reduction. AIP Adv. 4(11), 117103 (2014).

    Article  CAS  Google Scholar 

  50. X.J. Zhang, G.S. Wang, W.Q. Cao, Y.Z. Wei, J.F. Liang, L. Guo, and M.S. Cao: Enhanced microwave absorption property of reduced graphene oxide (RGO)–MnFe2O4 nanocomposites and polyvinylidene fluoride. ACS Appl. Mater. Interfaces 6(10), 7471 (2014).

    Article  CAS  Google Scholar 

  51. Y. Kang, Z. Chu, D. Zhang, G. Li, Z. Jiang, H. Cheng, and X. Li: Incorporate boron and nitrogen into graphene to make BCN hybrid nanosheets with enhanced microwave absorbing properties. Carbon 61, 200 (2013).

    Article  CAS  Google Scholar 

  52. P. Bhattacharya, S. Dhibar, G. Hatui, A. Mandal, T. Das, and C.K. Das: Graphene decorated with hexagonal shaped m-type ferrite and polyaniline wrapper: A potential candidate for electromagnetic wave absorbing and energy storage device applications. RSC Adv. 4(33), 17039 (2014).

    Article  CAS  Google Scholar 

  53. Y. Wang, Y. Huang, Q. Wang, and M. Zong: Preparation and electromagnetic properties of graphene-supported Ni0.8Zn0.2Ce0.06Fe1.94O4 nanocomposite. Powder Technol. 249, 304 (2013).

    Article  CAS  Google Scholar 

  54. L. Wang, Y. Huang, and H. Huang: N-doped graphene@polyaniline nanorod arrays hierarchical structures: Synthesis and enhanced electromagnetic absorption properties. Mater. Lett. 124, 89 (2014).

    Article  CAS  Google Scholar 

  55. S. Stankovich, D.A. Dikin, G.H. Dommett, K.M. Kohlhaas, E.J. Zimney, E.A. Stach, R.D. Piner, S.T. Nguyen, and R.S. Ruoff: Graphene-based composite materials. Nature 442(7100), 282 (2006).

    Article  CAS  Google Scholar 

  56. H-B. Zhang, Q. Yan, W-G. Zheng, Z. He, and Z-Z. Yu: Tough graphene–polymer microcellular foams for electromagnetic interference shielding. ACS Appl. Mater. Interfaces 3(3), 918 (2011).

    Article  CAS  Google Scholar 

  57. K. Singh, A. Ohlan, V.H. Pham, R. Balasubramaniyan, S. Varshney, J. Jang, S.H. Hur, W.M. Choi, M. Kumar, and S. Dhawan: Nanostructured graphene/Fe3O4 incorporated polyaniline as a high performance shield against electromagnetic pollution. Nanoscale 5(6), 2411 (2013).

    Article  CAS  Google Scholar 

  58. L. Yan, J. Wang, X. Han, Y. Ren, Q. Liu, and F. Li: Enhanced microwave absorption of Fe nanoflakes after coating with SiO2 nanoshell. Nanotechnology 21(9), 095708 (2010).

    Article  CAS  Google Scholar 

  59. P. Gambardella, S. Rusponi, M. Veronese, S. Dhesi, C. Grazioli, A. Dallmeyer, I. Cabria, R. Zeller, P. Dederichs, and K. Kern: Giant magnetic anisotropy of single cobalt atoms and nanoparticles. Science 300(5622), 1130 (2003).

    Article  CAS  Google Scholar 

  60. T. Chen, F. Deng, J. Zhu, C. Chen, G. Sun, S. Ma, and X. Yang: Hexagonal and cubic Ni nanocrystals grown on graphene: Phase-controlled synthesis, characterization and their enhanced microwave absorption properties. J. Mater. Chem. 22(30), 15190 (2012).

    Article  CAS  Google Scholar 

  61. G. Giovannetti, P. Khomyakov, G. Brocks, V.v. Karpan, J. Van den Brink, and P. Kelly: Doping graphene with metal contacts. Phys. Rev. Lett. 101(2), 026803 (2008).

    Article  CAS  Google Scholar 

  62. Y.S. Dedkov and M. Fonin: Electronic and magnetic properties of the graphene–ferromagnet interface. New J. Phys. 12(12), 125004 (2010).

    Article  CAS  Google Scholar 

  63. C. Gong, G. Lee, B. Shan, E.M. Vogel, R.M. Wallace, and K. Cho: First-principles study of metal–graphene interfaces. J. Appl. Phys. 108(12), 123711 (2010).

    Article  CAS  Google Scholar 

  64. E.J. Lee, K. Balasubramanian, R.T. Weitz, M. Burghard, and K. Kern: Contact and edge effects in graphene devices. Nat. Nanotechnol. 3(8), 486 (2008).

    Article  CAS  Google Scholar 

  65. G. Pan, J. Zhu, S. Ma, G. Sun, and X. Yang: Enhancing the electromagnetic performance of Co through the phase-controlled synthesis of hexagonal and cubic Co nanocrystals grown on graphene. ACS Appl. Mater. Interfaces 5(23), 12716 (2013).

    Article  CAS  Google Scholar 

  66. X. Li, J. Feng, Y. Du, J. Bai, H. Fan, H. Zhang, Y. Peng, and F. Li: One-pot synthesis of CoFe2O4/graphene oxide hybrids and their conversion into FeCo/graphene hybrids for lightweight and highly efficient microwave absorber. J. Mater. Chem. A 3(10), 5535 (2015).

    Article  CAS  Google Scholar 

  67. E. Ma, J. Li, N. Zhao, E. Liu, C. He, and C. Shi: Preparation of reduced graphene oxide/Fe3O4 nanocomposite and its microwave electromagnetic properties. Mater. Lett. 91, 209 (2013).

    Article  CAS  Google Scholar 

  68. M. Mishra, A.P. Singh, B. Singh, V. Singh, and S. Dhawan: Conducting ferrofluid: A high-performance microwave shielding material. J. Mater. Chem. A 2(32), 13159 (2014).

    Article  CAS  Google Scholar 

  69. P. Liu, Y. Huang, L. Wang, M. Zong, and W. Zhang: Hydrothermal synthesis of reduced graphene oxide–Co3O4 composites and the excellent microwave electromagnetic properties. Mater. Lett. 107, 166 (2013).

    Article  CAS  Google Scholar 

  70. J-J. Fang, S-F. Li, W-K. Zha, H-Y. Cong, J-F. Chen, and Z-Z. Chen: Microwave absorbing properties of nickel-coated graphene. J. Inorg. Mater. 26(5), 467 (2011).

    Article  CAS  Google Scholar 

  71. G. Wang, Z. Gao, G. Wan, S. Lin, P. Yang, and Y. Qin: High densities of magnetic nanoparticles supported on graphene fabricated by atomic layer deposition and their use as efficient synergistic microwave absorbers. Nano Res. 7(5), 704 (2014).

    Article  CAS  Google Scholar 

  72. L. Kong, X. Yin, Y. Zhang, X. Yuan, Q. Li, F. Ye, L. Cheng, and L. Zhang: Electromagnetic wave absorption properties of reduced graphene oxide modified by maghemite colloidal nanoparticle clusters. J. Phys. Chem. C 117(38), 19701 (2013).

    Article  CAS  Google Scholar 

  73. H. Zhang, X. Tian, C. Wang, H. Luo, J. Hu, Y. Shen, and A. Xie: Facile synthesis of RGO/NiO composites and their excellent electromagnetic wave absorption properties. Appl. Surf. Sci. 314, 228 (2014).

    Article  CAS  Google Scholar 

  74. M. Zong, Y. Huang, H. Wu, Y. Zhao, Q. Wang, and X. Sun: One-pot hydrothermal synthesis of RGO/CoFe2O4 composite and its excellent microwave absorption properties. Mater. Lett. 114, 52 (2014).

    Article  CAS  Google Scholar 

  75. C-H. Peng, P.S. Chen, and C-C. Chang: High-temperature microwave bilayer absorber based on lithium aluminum silicate/lithium aluminum silicate-SiC composite. Ceram. Int. 40(1), 47 (2014).

    Article  CAS  Google Scholar 

  76. N-N. Song, Y-J. Ke, H-T. Yang, H. Zhang, X-Q. Zhang, B-G. Shen, and Z-H. Cheng: Integrating giant microwave absorption with magnetic refrigeration in one multifunctional intermetallic compound of LaFe11.6Si1.4C0.2H1.7. Sci. Rep. 3(2291), 1 (2013).

    Google Scholar 

  77. L. Zhang, X. Zhang, G. Zhang, Z. Zhang, S. Liu, P. Li, Q. Liao, Y. Zhao, and Y. Zhang: Investigation on the optimization, design and microwave absorption properties of reduced graphene oxide/tetrapod-like ZnO composites. RSC Adv. 5(14), 10197 (2015).

    Article  CAS  Google Scholar 

  78. L. Zhang, X. Yu, H. Hu, Y. Li, M. Wu, Z. Wang, G. Li, Z. Sun, and C. Chen: Facile synthesis of iron oxides/reduced graphene oxide composites: Application for electromagnetic wave absorption at high temperature. Sci. Rep. 5, 9298 (2015).

    Article  CAS  Google Scholar 

  79. N. Li, Y. Huang, F. Du, X. He, X. Lin, H. Gao, Y. Ma, F. Li, Y. Chen, and P.C. Eklund: Electromagnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett. 6(6), 1141 (2006).

    Article  CAS  Google Scholar 

  80. J. Liang, Y. Wang, Y. Huang, Y. Ma, Z. Liu, J. Cai, C. Zhang, H. Gao, and Y. Chen: Electromagnetic interference shielding of graphene/epoxy composites. Carbon 47(3), 922 (2009).

    Article  CAS  Google Scholar 

  81. Y. Wang and X. Jing: Intrinsically conducting polymers for electromagnetic interference shielding. Polym. Adv. Technol. 16(4), 344 (2005).

    Article  CAS  Google Scholar 

  82. S. Dhawan, N. Singh, and S. Venkatachalam: Shielding behaviour of conducting polymer-coated fabrics in X-band, W-band and radio frequency range. Synth. Met. 129(3), 261 (2002).

    Article  CAS  Google Scholar 

  83. T-H. Ting and K-H. Wu: Synthesis, characterization of polyaniline/BaFe12O19 composites with microwave-absorbing properties. J. Magn. Magn. Mater. 322(15), 2160 (2010).

    Article  CAS  Google Scholar 

  84. J. Joo and A. Epstein: Electromagnetic radiation shielding by intrinsically conducting polymers. Appl. Phys. Lett. 65(18), 2278 (1994).

    Article  CAS  Google Scholar 

  85. S-T. Hsiao, C-C.M. Ma, W-H. Liao, Y-S. Wang, S-M. Li, Y-C. Huang, R-B. Yang, and W-F. Liang: Lightweight and flexible reduced graphene oxide/water-borne polyurethane composites with high electrical conductivity and excellent electromagnetic interference shielding performance. ACS Appl. Mater. Interfaces 6(13), 10667 (2014).

    Article  CAS  Google Scholar 

  86. V.K. Singh, A. Shukla, M.K. Patra, L. Saini, R.K. Jani, S.R. Vadera, and N. Kumar: Microwave absorbing properties of a thermally reduced graphene oxide/nitrile butadiene rubber composite. Carbon 50(6), 2202 (2012).

    Article  CAS  Google Scholar 

  87. K. Wu, T. Ting, G. Wang, C. Yang, and C. Tsai: Synthesis and microwave electromagnetic characteristics of bamboo charcoal/polyaniline composites in 2–40 GHz. Synth. Met. 158(17), 688 (2008).

    Article  CAS  Google Scholar 

  88. J. Hongxia, L. Qiaoling, Y. Yun, G. Zhiwu, and Y. Xiaofeng: Preparation and microwave absorption properties of core–shell structured barium titanate/polyaniline composite. J. Magn. Magn. Mater. 332, 10 (2013).

    Article  CAS  Google Scholar 

  89. S. Dhawan, N. Singh, and D. Rodrigues: Electromagnetic shielding behaviour of conducting polyaniline composites. Sci. Technol. Adv Mater. 4(2), 105 (2003).

    Article  CAS  Google Scholar 

  90. T. Mäkelä, S. Pienimaa, T. Taka, S. Jussila, and H. Isotalo: Thin polyaniline films in EMI shielding. Synth. Met. 85(1), 1335 (1997).

    Article  Google Scholar 

  91. C. Lee, H. Song, K. Jang, E. Oh, A. Epstein, and J. Joo: Electromagnetic interference shielding efficiency of polyaniline mixtures and multilayer films. Synth. Met. 102(1), 1346 (1999).

    Article  CAS  Google Scholar 

  92. X. Chen, F. Meng, Z. Zhou, X. Tian, L. Shan, S. Zhu, X. Xu, M. Jiang, L. Wang, D. Hui, Y. Wang, J. Lu, and J. Gou: One-step synthesis of graphene/polyaniline hybrids by in situ intercalation polymerization and their electromagnetic properties. Nanoscale 6(14), 8140 (2014).

    Article  CAS  Google Scholar 

  93. Z. Chen, C. Xu, C. Ma, W. Ren, and H.M. Cheng: Lightweight and flexible graphene foam composites for high-performance electromagnetic interference shielding. Adv. Mater. 25(9), 1296 (2013).

    Article  CAS  Google Scholar 

  94. W-L. Song, M-S. Cao, M-M. Lu, S. Bi, C-Y. Wang, J. Liu, J. Yuan, and L-Z. Fan: Flexible graphene/polymer composite films in sandwich structures for effective electromagnetic interference shielding. Carbon 66, 67 (2014).

    Article  CAS  Google Scholar 

  95. C. Ramirez, M. Osendi, P. Miranzo, M. Belmonte, F. Figueiredo, A. Castro-Beltrán, and M. Terrones: Graphene nanoribbon ceramic composites. Carbon 90, 207 (2015).

    Article  CAS  Google Scholar 

  96. A. Centeno, V.G. Rocha, B. Alonso, A. Fernández, C.F. Gutierrez-Gonzalez, R. Torrecillas, and A. Zurutuza: Graphene for tough and electroconductive alumina ceramics. J. Eur. Ceram. Soc. 33(15), 3201 (2013).

    Article  CAS  Google Scholar 

  97. C. Ramirez, F.M. Figueiredo, P. Miranzo, P. Poza, and M.I. Osendi: Graphene nanoplatelet/silicon nitride composites with high electrical conductivity. Carbon 50(10), 3607 (2012).

    Article  CAS  Google Scholar 

  98. S-Y. Hong and C-H. Ra: Ceramic composition for absorbing electromagnetic wave and a method for manufacturing the same. Google Patents, 1997.

  99. X. Yin, Y. Xue, L. Zhang, and L. Cheng: Dielectric, electromagnetic absorption and interference shielding properties of porous yttria-stabilized zirconia/silicon carbide composites. Ceram. Int. 38(3), 2421 (2012).

    Article  CAS  Google Scholar 

  100. X. Li, L. Zhang, X. Yin, L. Feng, and Q. Li: Effect of chemical vapor infiltration of SiC on the mechanical and electromagnetic properties of Si3N4–SiC ceramic. Scr. Mater. 63(6), 657 (2010).

    Article  CAS  Google Scholar 

  101. B. Zhang, C. Lu, and H. Li: Improving microwave absorption property of ZnO particle by doping graphene. Mater. Lett. 116, 16 (2014).

    Article  CAS  Google Scholar 

  102. Q. Yuchang, W. Qinlong, L. Fa, and Z. Wancheng: Temperature dependence of the electromagnetic properties of graphene nanosheet reinforced alumina ceramics in the X-band. J. Mater. Chem. C 4, 4853 (2016).

    Article  CAS  Google Scholar 

  103. M. Han, X. Yin, W. Duan, S. Ren, L. Zhang, and L. Cheng: Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. J. Eur. Ceram. Soc. 36(11), 2695 (2016).

    Article  CAS  Google Scholar 

  104. K. Chen, C. Xiang, L. Li, H. Qian, Q. Xiao, and F. Xu: A novel ternary composite: Fabrication, performance and application of expanded graphite/polyaniline/CoFe2O4 ferrite. J. Mater. Chem. 22(13), 6449 (2012).

    Article  CAS  Google Scholar 

  105. P. Liu, Y. Huang, L. Wang, and W. Zhang: Preparation and excellent microwave absorption property of three component nanocomposites: Polyaniline-reduced graphene oxide-Co3O4 nanoparticles. Synth. Met. 177, 89 (2013).

    Article  CAS  Google Scholar 

  106. P. Liu, Y. Huang, and X. Zhang: Enhanced electromagnetic absorption properties of reduced graphene oxide–polypyrrole with NiFe2O4 particles prepared with simple hydrothermal method. Mater. Lett. 120, 143 (2014).

    Article  CAS  Google Scholar 

  107. P.B. Liu, Y. Huang, and X. Sun: Excellent electromagnetic absorption properties of poly(3,4-ethylenedioxythiophene)-reduced graphene oxide-Co3O4 composites prepared by a hydrothermal method. ACS Appl. Mater. Interfaces 5(23), 12355 (2013).

    Article  CAS  Google Scholar 

  108. X-J. Zhang, G-S. Wang, Y-Z. Wei, L. Guo, and M-S. Cao: Polymer-composite with high dielectric constant and enhanced absorption properties based on graphene–CuS nanocomposites and polyvinylidene fluoride. J. Mater. Chem. A 1(39), 12115 (2013).

    Article  CAS  Google Scholar 

  109. P. Liu, Y. Huang, and X. Zhang: Synthesis of graphene@branching-like polypyrrole@CoFe2O4 composites and their excellent electromagnetic wave absorption properties. Mater. Lett. 136, 298 (2014).

    Article  CAS  Google Scholar 

  110. M. Zong, Y. Huang, H. Wu, Y. Zhao, Q. Wang, and X. Sun: One-pot hydrothermal synthesis of RGO/CoFe2O4 composite and its excellent microwave absorption properties. Mater. Lett. 114, 52 (2014).

    Article  CAS  Google Scholar 

  111. B. Shen, W. Zhai, M. Tao, J. Ling, and W. Zheng: Lightweight, multifunctional polyetherimide/graphene@Fe3O4 composite foams for shielding of electromagnetic pollution. ACS Appl. Mater. Interfaces 5(21), 11383 (2013).

    Article  CAS  Google Scholar 

  112. C. Li, Y. Huang, and J. Chen: Dopamine-assisted one-pot synthesis of graphene@Ni@C composites and their enhanced microwave absorption performance. Mater. Lett. 154, 136 (2015).

    Article  CAS  Google Scholar 

  113. L. Kong, X. Yin, X. Yuan, Y. Zhang, X. Liu, L. Cheng, and L. Zhang: Electromagnetic wave absorption properties of graphene modified with carbon nanotube/poly(dimethyl siloxane) composites. Carbon 73, 185 (2014).

    Article  CAS  Google Scholar 

  114. L. Wang, J. Zhu, H. Yang, F. Wang, Y. Qin, T. Zhao, and P. Zhang: Fabrication of hierarchical graphene@Fe3O4@SiO2@polyaniline quaternary composite and its improved electrochemical performance. J. Alloys Compd. 634, 232 (2015).

    Article  CAS  Google Scholar 

  115. L. Wang, Y. Huang, C. Li, J. Chen, and X. Sun: Hierarchical composites of polyaniline nanorod arrays covalently-grafted on the surfaces of graphene@ Fe3O4@C with high microwave absorption performance. Compos. Sci. Technol. 108, 1 (2015).

    Article  CAS  Google Scholar 

  116. P. Bhattacharya, S. Dhibar, M.K. Kundu, G. Hatui, and C.K. Das: Graphene and MWCNT based bi-functional polymer nanocomposites with enhanced microwave absorption and supercapacitor property. Mater. Res. Bull. 66, 200 (2015).

    Article  CAS  Google Scholar 

  117. H. Lv, Y. Guo, Y. Zhao, H. Zhang, B. Zhang, G. Ji, and Z.J. Xu: Achieving tunable electromagnetic absorber via graphene/carbon sphere composites. Carbon 110, 130 (2016).

    Article  CAS  Google Scholar 

  118. Y. Zhang, Y. Huang, T. Zhang, H. Chang, P. Xiao, H. Chen, Z. Huang, and Y. Chen: Broadband and tunable high-performance microwave absorption of an ultralight and highly compressible graphene foam. Adv. Mater. 27(12), 2049 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Sheng Li.

Additional information

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, JS., Huang, H., Zhou, YJ. et al. Research progress of graphene-based microwave absorbing materials in the last decade. Journal of Materials Research 32, 1213–1230 (2017). https://doi.org/10.1557/jmr.2017.80

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.80

Navigation