Skip to main content

Advertisement

Log in

Thermodynamic description of hydrogen storage materials Cr–Ti–Zr and Fe–Ti–Zr

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Modern hydrogen technology requires materials with high capacity storage. Many metals and alloys form cheap metal hydrides that can contain a high volume density of hydrogen. The quaternary alloy Cr–Fe–Ti–Zr with Laves phases is one promising hydrogen storage material. Understanding phase equilibria properties is essential to improve the Laves phases’ hydrogen storage capacity. In this work, the thermodynamic description of two constituent ternary phase materials, Cr–Ti–Zr and Fe–Ti–Zr are investigated using the Calphad method. A set of Gibbs energies was optimized during this work and good agreement between modeling and available experimental information was found. Moreover, a new thermodynamic model for a binary Fe–Zr system was developed based on recent experimental investigation about intermetallic compounds FeZr2 and FeZr3. Obtained in this work results can find application in development of new hydrogen storage materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. S.W. Cho, C.S. Han, C.N. Park, and E. Akiba: Hydrogen storage characteristics of Ti–Zr–Cr–V alloys. J. Alloys Compd. 289, 244 (1999).

    Article  CAS  Google Scholar 

  2. D. Shaltiel, I. Jacob, and D. Davidov: Hydrogen absorption and desorption properties of AB2 Laves-phase pseudobinary compounds. J. Less-Common Met. 53, 117 (1977).

    Article  CAS  Google Scholar 

  3. D.G. Ivey and D.O. Northwood: Hydrogen site occupancy in AB2 Laves phases. J. Less-Common Met. 115, 23 (1986).

    Article  CAS  Google Scholar 

  4. L. Kaufman and H. Bernstein: Computer Calculation of Phase Diagrams (Academic Press, NY, USA, 1970).

    Google Scholar 

  5. J. Pavlu, J. Vrestal, and M. Sob: Stability of Laves phases in the Cr–Zr system. Calphad 33, 382 (2009).

    Article  CAS  Google Scholar 

  6. G. Kresse and J. Furthmüller: Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996).

    Article  CAS  Google Scholar 

  7. R.F. Domagala, D.J. McPherson, and M. Hansen: System zirconium–chromium. Trans. AIME 197, 279 (1953).

    Google Scholar 

  8. E. Gebhart, J. Rexer, and G. Petzow: Das system zirkonium–tantal–chrom. Z. Metallkd. 58, 534 (1967).

    Google Scholar 

  9. B. Budberg, S.P. Alisova, and R.S. Musaev: Phase diagram of the Zr–Cr system. Izv. Akad. Nauk SSSR, Met. 3, 222 (1968).

    Google Scholar 

  10. W.M. Rumball and F.G. Elder: Phase equilibria in zirconium-rich zirconium–chromium–oxygen alloys. J. Less-Common Met. 19, 345 (1969).

    Article  CAS  Google Scholar 

  11. V.N. Svechnikov and A.C. Spektor: Phase diagram of the Cr–Zr system in the region of the compound ZrCr2. Izv. AN SSSR 4, 201 (1971).

    Google Scholar 

  12. V.V. Petkov, S.B. Prima, L.A. Tretyachenkov, and Yu.A. Kocherzhinskij: The binary Cr–Zr system. Metallofiz. 46, 80 (1973).

    Google Scholar 

  13. K. Zeng, M. Hämäläinen, and R. Luoma: A thermodynamic assessment of the Cr–Zr system. Z. Metallkd. 84, 23 (1993).

    CAS  Google Scholar 

  14. K. Zeng, M. Hämäläinen, and K. Lilius: Thermodynamic modeling of the Laves phases in the Cr·Zr system. Calphad 17, 101 (1993).

    Article  Google Scholar 

  15. J. Pavlu, J. Vrestal, and M. Sob: Thermodynamic modeling of Laves phases in the Cr–Hf and Cr–Ti systems: Reassessment using first-principles results. Calphad 34, 215 (2010).

    Article  CAS  Google Scholar 

  16. O.N. Carlson and D.G. Alexander: The hafnium–chromium system. J. Less-Common Met. 15, 361 (1968).

    Article  CAS  Google Scholar 

  17. V.N. Svechnikov, A.K. Shurin, and G.P. Dmitrijeva: On the CrTi2 phase. Prevrashchen. Faz., An Ukr. SSR 1965, 159 (1965).

    Google Scholar 

  18. V.N. Svechnikov, M.Yu. Teslyuk, Yu.A. Kocherzhinsky, V.V. Petkov, and E.V. Dabizha: Three modifications of TiCr2. Dopov Akad. Nauk Ukr. SSR Ser. A 32, 837 (1970).

    CAS  Google Scholar 

  19. M.K. McQuillan: A provisional constitutional diagram of the chromium–titanium system. J. Inst. Met. 80, 379 (1951).

    Google Scholar 

  20. M.K. McQuillan: The effect of the elements of the first long period on the α–β transformation in titanium. J. Inst. Met. 82, 433 (1954).

    CAS  Google Scholar 

  21. F.B. Cuff, N.J. Grant, and C.F. Floe: Titanium–chromium phase diagram. Trans. AIME 194, 848 (1952).

    Google Scholar 

  22. P. Duwez and J.L. Taylor: A partial titanium–chromium phase diagram and the crystal structure of TiCr2. Trans. AMS 44, 495 (1952).

    Google Scholar 

  23. R.J. van Thyne, H.D. Kessler, and M. Hansen: The systems titanium–chromium and titanium–iron. Trans. AMS 44, 974 (1952).

    Google Scholar 

  24. Yu.A. Bagarjatskij, G.I. Nosova, and T.V. Tagunova: Study of phase diagrams of the alloys titanium–chromium, titanium–tungsten, and titanium–chromium–tungsten, prepared by the method of powder metallurgy. Russ. J. Inorg. Chem. 3, 330 (1958).

    Google Scholar 

  25. F. Ermanis, P.A. Farrar, and H.M. Argolin: A reinvestigaton of the systems Ti–Cr and Ti–V. Trans. AIME 221, 904 (1961).

    CAS  Google Scholar 

  26. V.S. Mikheev and V.S. Alekasashin: Electrical volume resistivity of alloys of the titanium–chromium system up to temperatures of 1100 °C. Fiz. Met. Metall. 14, 62 (1962).

    Google Scholar 

  27. P.A. Farrar and H. Margolin: A reinvestigation of the chromium-rich region of the titanium–chromium system. Trans. AIME 227, 1342 (1963).

    CAS  Google Scholar 

  28. S.A. Minayeva, P.B. Budberg, and A.L. Gavze: Phase structure of Ti–Cr alloys. Russ. Metall. 4, 205 (1971).

    Google Scholar 

  29. W. Zhuang, J. Shen, Y. Liu, L. Ling, S. Shang, Y. Du, and J.C. Schuster: Thermodynamic optimization of the Cr–Ti system. Z. Metallkd. 91, 121 (2000).

    CAS  Google Scholar 

  30. M. Jiang, K. Oikawa, T. Ikeshoji, L. Wulff, and K. Ishida: Thermodynamic calculations of Fe–Zr and Fe–Zr–C systems. J. Phase Equilib. 22, 406 (2001).

    Article  CAS  Google Scholar 

  31. V.S. Sudavtsova, V.P. Kurach, and G.I. Batalin: Thermochemical, properties of liquid binary alloys Fe–(Y, Zr, Nb, Mo). Izv. Akad. Nauk SSSr, Metall 3, 60 (1987).

    Google Scholar 

  32. O.Y. Sidorov, M.G. Valishev, Y.O. Esin, and P.V. Gel’d: Formation heat of iron–zirconium melts. Izv. Akad. Nauk SSSR, Metall. 6, 23 (1988).

    Google Scholar 

  33. H. Wang, R. Luck, and B. Predel: Calorimetric determination of the enthalpy of mixing of liquid iron–zirconium alloys. Z. Metallkd. 81, 843 (1990).

    CAS  Google Scholar 

  34. M. Rosner-Kuhn, J.P. Qin, K. Schaefers, U. Thiedemann, and M.G. Frohberg: Temperature-dependence of the mixing enthalpy and excess heat-capacity in the liquid-system iron–zirconium. Z. Metallkd. 86, 682 (1995).

    Google Scholar 

  35. V.N. Svechnikov and A.T. Spector: Verification of Fe–Zr alloy equilibrium phase diagrams. Vaprosy Fiz. Metall. Metalloved. 11, 30 (1960).

    Google Scholar 

  36. V.N. Svechnikov and A.T. Spektor: The iron–zirconium phase diagram. Dokl. Akad. Nauk SSSR 143, 613 (1962).

    CAS  Google Scholar 

  37. E.P. Abrahamson and S.L. Lopata: The lattice parameter and solubility limits of α iron as affected by some binary transition–element additions. Trans. AIME 236, 76 (1966).

    CAS  Google Scholar 

  38. T.O. Malakhova and Z.M. Alekseyeva: The Zr–Fe phase diagram in the range 20–40 at.% Fe and the crystalline structure of the intermetallic compound Zr3Fe. J. Less-Common Met. 81, 293 (1981).

    Article  CAS  Google Scholar 

  39. T.O. Malakhova and A.N. Kobylkin: Phase diagram for Zr–Fe (0–66.6 at.% Fe). Russ. Metall. 2, 187 (1982).

    Google Scholar 

  40. L.E. Tanner and D.W. Levinson: Observations on the system zirconium–iron. Trans. AIME 215, 1066 (1959).

    CAS  Google Scholar 

  41. M.M. Stupel, M. Bamberger, and B.Z. Weiss: Determination of Fe solubility in αZr by Mössbauer spectroscopy. Scr. Metall. 19, 739 (1985).

    Article  CAS  Google Scholar 

  42. F. Aubertin, U. Gonser, S.J. Campbell, and H.G. Wagner: An appraisal of the phases of the zirconium–iron system. Z. Metallkd. 76, 237 (1985).

    CAS  Google Scholar 

  43. R. Borrelly, P. Merle, and L. Adami: Study of the solubility of iron in zirconium by thermoelectric power measurements. J. Nucl. Mater. 170, 147 (1990).

    Article  CAS  Google Scholar 

  44. C. Servant, C. Gueneau, and I. Ansara: Experimental and thermodynamic assessment of the Fe·Zr system. J. Alloys Compd. 220, 19 (1995).

    Article  CAS  Google Scholar 

  45. K.C. Hari Kumar, P. Wollants, and L. Delaey: Thermodynamic assessment of the Ti·Zr system and calculation of the Nb·Ti·Zr phase diagram. J. Alloys Compd. 206, 121 (1994).

    Article  Google Scholar 

  46. J.P. Auffredic, E. Etchessahar, and D. Debuigne: Remarques sur le diagramme de phases Ti–Zr: Étude microcalorimétrique de la transition α ⇄ β [Calorimetric study of transformation α ⇄ β]. J. Less-Common Met. 84, 49 (1982).

    Article  CAS  Google Scholar 

  47. J. Blacktop, J. Crangle, and B.B. Argent: The α → β transformation in the Ti–Zr system and the influence of additions of up to 50 at.% Hf. J. Less-Common Met. 109, 375 (1985).

    Article  CAS  Google Scholar 

  48. Sh.I. Peyzulayev, V.V. Sumin, V.N. Bykov, and L.K. Popova: Activities of titanium and iron in binary Alloys with zirconium. lzv. Akad. Nauk SSSI, Met. 4, 144 (1971).

    Google Scholar 

  49. R.H. Zee, J.F. Watters, and R.D. Davidson: Diffusion and chemical activity of Zr–Sn and Zr–Ti systems. Phys. Rev. B: Condens. Matter Mater. Phys. 34, 6895 (1986).

    Article  CAS  Google Scholar 

  50. E. Rudy: Tech. Rep. AFML-TR-65-2, Part V: Compendium of Phase Diagram Data (Wright Patterson Air Force Base, Ohio, 1969).

    Google Scholar 

  51. P.A. Farrar and S. Adler: System titanium–zriconium. Trans. AIME 236, 1061 (1966).

    CAS  Google Scholar 

  52. D. Chatterji, M.T. Hepworth, and S.J. Hruska: On the system Ti–Zr. Metall. Trans. 2, 1271 (1971).

    Article  CAS  Google Scholar 

  53. E. Etchessahar and D. Debuigne: Study of the allotropic transformation in equiatomic titanium–zirconium alloys: Influence of purity of the materials and nitrogen on the phase transition. Mem. Sci. Rev. Metall. 74, 195 (1977).

    CAS  Google Scholar 

  54. L.F.S. Dumitrescu, M. Hillert, and N. Saunders: Comparison of Fe–Ti assessments. J. Phase Equilib. 19, 441 (1998).

    Article  CAS  Google Scholar 

  55. J.L. Murray: Phase Diagrams of Binary Titanium Alloys, J.L. Murray, ed. (ASM International, Metals Park, OH, 1987).

    Google Scholar 

  56. K. Balasubramanian: Unpublished research (Dept. Materials Science and Engineering, KTH, Stockholm, 1989).

    Google Scholar 

  57. K.C. Hari Kumar, P. Wollants, and L. Delaey: Thermodynamic reassessment and calculation of Fe–Ti phase diagram. Calphad 18, 223 (1994).

    Article  Google Scholar 

  58. S. Jonsson: Assessment of the Fe–Ti system. Metall. Mater. Trans. B 29, 361 (1998).

    Article  Google Scholar 

  59. I. Ansara, A.T. Dinsdale, and M.H. Rand, eds.: COST 508 — Final Report: Thermodynamic Database for Light Metal Al-alloys (European Communities, Brussels, 1998).

    Google Scholar 

  60. O. Kubaschewski and W.A. Dench: The heats of formation in the systems titanium–aluminium and titanium–iron. Acta Metall. 3, 339 (1955).

    Article  CAS  Google Scholar 

  61. R.J. Fruehan: Activities in liquid Fe-VO and Fe-BO alloys. Metall. Trans. 1, 2083 (1970).

    Article  CAS  Google Scholar 

  62. L.V. Dyubanov, A.Y. Stomakhin, and A.E. Filippov: Research into formation enthalpies of diluted solutions based on iron, cobalt, and nickel. Izv. V.U.Z Chem. Metall. 3, 5 (1975).

    Google Scholar 

  63. T. Furukawa and E. Kato: Thermodynamics of binary-liquid iron–titanium alloys by mass-spectrometry. Trans. ISIJ 16, 382 (1976).

    Article  Google Scholar 

  64. D. Robinson and B.B. Argent: Thermodynamics of dilute solutions of the first-period transition elements in Fe. Met. Sci. 10, 219 (1976).

    Article  CAS  Google Scholar 

  65. Y.O. Esin, M.G. Valishev, A.E. Ermakov, P.V. Geld, and M.S. Petrushevskii: Partial and integral enthalpy of mixing of liquid Fe–Ti alloys. Izv. Akad. Nauk SSSR, Met. 3, 30 (1981).

    Google Scholar 

  66. J.C. Gachon, M. Notin, and J. Hertz: The enthalphy of mixing of the intermediate phases in the systems FeTi, CoTi, and NiTi by direct reaction calorimetry. Thermochim. Acta 48, 155 (1981).

    Article  CAS  Google Scholar 

  67. H. Wang, R. Luck, and B. Predel: Heat capacities of intermetallic compounds in the iron–titanium system. Z. Metallkd. 84, 230 (1993).

    CAS  Google Scholar 

  68. A.T. Dinsdale, T.G. Chart, and E.H. Putland: NPL Report DMA (A) 96 (1985).

  69. A.D. McQuillan: The application of hydrogen equilibrium-pressure measurements to the investigation of titanium alloy systems. J. Inst. Met. 79, 73 (1951).

    CAS  Google Scholar 

  70. A. Hellawell and W. Hume-Rothery: The constitution of alloys of iron and manganese with transition elements of the first long period. Philos. Trans. R. Soc. London 249, 417 (1957).

    Article  CAS  Google Scholar 

  71. Y. Murakami, H. Kimura, and Y. Nishimura: An investigation on the titanium–iron–carbon system. Trans. Natl. Res. Inst. Met. 1, 7 (1959).

    Google Scholar 

  72. G.R. Speich: Precipitation of Laves phases from iron–niobium (columbium) and iron–titanium solid solutions. Trans. AIME 224, 850 (1962).

    CAS  Google Scholar 

  73. P.H. Booker: Temary phase equilibria in the systems Ti–Fe–C, Ti–Co–C and Ti–Ni–C, Ph.D. Thesis, Oregon Graduate Center, 1979.

  74. M. Ko and T. Nishizawa: Effect of magnetic transition on the solubility of alloying elements in alpha iron. J. Jpn. Inst. Met. 43, 118 (1979).

    Article  CAS  Google Scholar 

  75. D. Dew-Hughes: The addition of Mn and Al to the hydriding compound FeTi: Range of homogeneity and lattice parameters. Metall. Trans. 1A, 1219 (1980).

    Article  Google Scholar 

  76. P.P.J. Ramnaekers, E.J.J. van Loo, and G.E. Bastion: Phase relations, diffusion paths and kinetics in the system Fe–Ti–C at 1273 K. Z. Metallkd. 76, 245 (1985).

    Google Scholar 

  77. J.K. Kivilahti and O.B. Tarasova: The determination of the Ti-rich liquidus and solidus of the Ti–Fe system. Metall. Trans. 18A, 1679 (1987).

    Article  CAS  Google Scholar 

  78. C. Qiu and Z-E. Jin: An experimental study and thermodynamic evaluation of the Fe–Ti–W system at 1000 °C. Scr. Metall. 28, 85 (1993).

    Article  CAS  Google Scholar 

  79. G.J. Zhou, S. Jin, L.B. Liu, H.S. Liu, and Z.P. Jin: Determination of isothermal section of Fe–Ti–Zr ternary system at 1173 K. Trans. Nonferrous Met. Soc. China 17, 963 (2007).

    Article  Google Scholar 

  80. G.J. Zhou, C. Zeng, and Z. Liu: Phase equilibria in the Fe–Ti–Zr system at 1023 K. J. Alloys Compd. 490, 463 (2010).

    Article  CAS  Google Scholar 

  81. V. Raghavan: Fe–Ti–Zr (iron–titanium–zirconium). J. Phase Equilib. Diffus. 30, 109 (2009).

    Article  CAS  Google Scholar 

  82. F. Stein, G. Sauthoff, and M. Palm: Experimental determination of intermetallic phases, phase equilibria, and invariant reaction temperatures in the Fe–Zr system. J. Phase Equilib. 23, 480 (2002).

    Article  CAS  Google Scholar 

  83. I.I. Kornilov, O.K. Belousov, and R.S. Musayev: The Ti–Zr–Cr ternary system. Russ. Metall. 1, 135 (1969).

    Google Scholar 

  84. R.S. Musayev, I.I. Kornilov, and O.K. Belousov: Constitution diagram and mechanical properties of Ti–Zr–Cr alloys. Russ. Metall. 1, 168 (1974).

    Google Scholar 

  85. SGTE Unary Database version v5.0—Scientific Group Thermodynamics Europe 2009.

  86. E.A. Guggenheim: Mixtures (Oxford University Press, London, U.K., 1952).

    Google Scholar 

  87. N. Saunders and A.P. Miodownik: Calphad—A Comprehensive Guide (Elsevier, Oxford, U.K., 1998).

    Google Scholar 

  88. M. Hillert and L-I. Steffansson: Regular-solution model for stoichiometric phases and ionic melts. Acta Chem. Scand. 24, 3618 (1970).

    Article  CAS  Google Scholar 

  89. J.O. Andersson, T. Helander, L. Hoglund, P.F. Shi, and B. Sundman: Thermo-Calc, and Dictra, computational tools for materials science. Calphad 26, 273 (2002).

    Article  CAS  Google Scholar 

  90. S-L. Chen, S. Daniel, F. Zhang, Y.A. Chang, X-Y. Yan, F-Y. Xie, R. Schmid-Fetzer, and W.A. Oates: The PANDAT software package and its applications. Calphad 26, 175 (2002).

    Article  CAS  Google Scholar 

  91. R. Schmid-Fetzer, D. Andersson, P.Y. Chevalier, L. Eleno, O. Fabrichnaya, U.R. Kattner, B. Sundman, C. Wang, A. Watson, L. Zabdyr, and M. Zinkevich: Assessment techniques, database design and software facilities for thermodynamics and diffusion. Calphad 31, 38 (2007).

    Article  CAS  Google Scholar 

  92. H. Okamoto, ed.: ASM Handbook Volume III, 10th ed. (ASM International, Materials Park, OH, USA, 1992).

    Google Scholar 

Download references

ACKNOWLEDGMENT

This work was supported by the Taiwan Ministry of Science and Education (Grants 104-2221-E-259-002, 103-2221-E-259-002, and 105-2221-E-259-004).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Gierlotka.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gierlotka, W., Lee, Cy. Thermodynamic description of hydrogen storage materials Cr–Ti–Zr and Fe–Ti–Zr. Journal of Materials Research 32, 1386–1396 (2017). https://doi.org/10.1557/jmr.2017.78

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.78

Navigation