Skip to main content
Log in

The kinetics and microstructural evolution during metadynamic recrystallization of medium carbon Cr–Ni–Mo alloyed steel

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The metadynamic recrystallization (MDRX) behavior of a medium carbon Cr–Ni–Mo alloyed steel 34CrNiMo was investigated using two-stage hot compression test on a Gleeble thermal-mechanical simulator in the temperature range of 1273–1423 K, strain rate range of 0.1–5.0 s−1, and interval times of 0.5–5 s. The softening of the flow stress at the second stage of compression and microstructure observation confirm the occurrence of MDRX at the elevated temperatures within very short interval time. Then the MDRX softening fraction was calculated based on the flow stress curves. The results indicate that the MDRX softening fraction increased with increasing interval time, deformation temperature, and strain rate. The kinetics of MDRX softening behavior was established using Avrami equation and the apparent activation energy of MDRX for 34CrNiMo steel was evaluated as 93 kJ/mol. The predicted results show good agreements with the experimental ones, indicating the efficiency of proposed kinetics equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. X. Jin, Y. Rong, and X. Zhong: Wind turbine manufacturing industry in China: Current situation and problems. Renewable Sustainable Energy Rev. 33, 729 (2014).

    Article  Google Scholar 

  2. N-C. Tsai and C-W. Chiang: Spindle position regulation for wind power generators. Mech Syst Signal Process. 24(3), 873 (2010).

    Article  Google Scholar 

  3. C. Zhang, L. Zhang, W. Shen, C. Liu, Y. Xia, and R. Li: Study on constitutive modeling and processing maps for hot deformation of medium carbon Cr–Ni–Mo alloyed steel. Mater. Des. 90, 804 (2016).

    Article  CAS  Google Scholar 

  4. T. Sakai, M. Ohashi, K. Chiba, and J.J. Jonas: Recovery and recrystallization of polycrystalline nickel after hot working. Acta Metall. 36(7), 1781 (1988).

    Article  CAS  Google Scholar 

  5. R.A. Petkovic, M.J. Luton, and J.J. Jonas: Recovery and recrystallization of carbon steel between intervals of hot working. Can. Metall. Q. 14(2), 137 (1975).

    Article  CAS  Google Scholar 

  6. A.M. Elwazri, E. Essadiqi, and S. Yue: Kinetics of metadynamic recrystallization in microalloyed hypereutectoid steels. ISIJ Int. 44(4), 744 (2004).

    Article  CAS  Google Scholar 

  7. P. Uranga, A.I. Fernández, B. López, and J.M. Rodriguez-Ibabe: Transition between static and metadynamic recrystallization kinetics in coarse Nb microalloyed austenite. Mater. Sci. Eng., A 345(1–2), 319 (2003).

    Article  Google Scholar 

  8. A.M. Elwazri, P. Wanjara, and S. Yue: Metadynamic and static recrystallization of hypereutectoid steel. ISIJ Int. 43(7), 1080 (2003).

    Article  CAS  Google Scholar 

  9. Y.C. Lin, M.S. Chen, and J. Zhong: Study of metadynamic recrystallization behaviors in a low alloy steel. J. Mater. Process. Technol. 209(5), 2477 (2009).

    Article  CAS  Google Scholar 

  10. Y.C. Lin and M.S. Chen: Study of microstructural evolution during metadynamic recrystallization in a low-alloy steel. Mater. Sci. Eng., A 501(1–2), 229 (2009).

    Article  Google Scholar 

  11. Y.G. Liu, J. Liu, M.Q. Li, and H. Lin: The study on kinetics of static recrystallization in the two-stage isothermal compression of 300M steel. Comput. Mater. Sci. 84(0), 115 (2014).

    Article  CAS  Google Scholar 

  12. Y.G. Liu, M.Q. Li, and J. Luo: The modelling of dynamic recrystallization in the isothermal compression of 300M steel. Mater. Sci. Eng., A 574, 1 (2013).

    Article  CAS  Google Scholar 

  13. J. Liu, Y.G. Liu, H. Lin, and M.Q. Li: The metadynamic recrystallization in the two-stage isothermal compression of 300M steel.Mater. Sci. Eng., A 565(0), 126 (2013).

    Article  CAS  Google Scholar 

  14. F. Chen, Z. Cui, D. Sui, and B. Fu: Recrystallization of 30Cr2Ni4MoV ultra-super-critical rotor steel during hot deformation. Part III: Metadynamic recrystallization. Mater. Sci. Eng., A 540(0), 46 (2012).

    Article  CAS  Google Scholar 

  15. C. Sommitsch, D. Huber, and M. Stockinger: Metadynamic recrystallization of the nickel-based superalloy Allvac 718Plus. Mater. Sci. Forum 638–642, 2327 (2010).

    Article  Google Scholar 

  16. S.C. Medeiros, Y.V.R.K. Prasad, W.G. Frazier, and R. Srinivasan: Microstructural modeling of metadynamic recrystallization in hot working of IN 718 superalloy. Mater. Sci. Eng., A 293(1–2), 198 (2000).

    Article  Google Scholar 

  17. J.H. Bianchi and L.P. Karjalainen: Modelling of dynamic and metadynamic recrystallisation during bar rolling of a medium carbon spring steel. J. Mater. Process. Technol. 160(3), 267 (2005).

    Article  CAS  Google Scholar 

  18. L.X. Zhou and T.N. Baker: Effects on dynamic and metadynamic recrystallization on microstructures of wrought IN-718 due to hot deformation. Mater. Sci. Eng., A 196(1–2), 89 (1995).

    Article  Google Scholar 

  19. C. Zhang, L. Zhang, W. Shen, C. Liu, and Y. Xia: The kinetics of metadynamic recrystallization in a Ni–Cr–Mo-based superalloy Hastelloy C-276. J. Mater. Eng. Perform. 25(2), 545 (2016).

    Article  CAS  Google Scholar 

  20. C. Zhang, L. Zhang, Q. Xu, Y. Xia, and W. Shen: The kinetics and cellular automaton modeling of dynamic recrystallization behavior of a medium carbon Cr–Ni–Mo alloyed steel in hot working process. Mater. Sci. Eng., A 678, 33 (2016).

    Article  CAS  Google Scholar 

  21. T. Sakai, A. Belyakov, R. Kaibyshev, H. Miura, and J.J. Jonas: Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 60(0), 130 (2014).

    Article  CAS  Google Scholar 

  22. Y.C. Lin, L.T. Li, and Y.C. Xia: A new method to predict the metadynamic recrystallization behavior in 2124 aluminum alloy. Comput. Mater. Sci. 50(7), 2038 (2011).

    Article  CAS  Google Scholar 

  23. A. Laasraoui and J.J. Jonas: Recrystallization of austenite after deformation at high temperatures and strain rates—analysis and modeling. Metall. Trans. A 22(1), 151 (1991).

    Article  Google Scholar 

  24. S. Gu, C. Zhang, L. Zhang, and W. Shen: Characteristics of metadynamic recrystallization of Nimonic 80A superalloy. J. Mater. Res. 30(4), 538 (2015).

    Article  CAS  Google Scholar 

  25. C. Roucoules, S. Yue, and J.J. Jonas: Effect of alloying elements on metadynamic recrystallization in HSLA steels. Metall. Mater. Trans. A 26(1), 181 (1995).

    Article  Google Scholar 

  26. Y.C. Lin, X-M. Chen, M-S. Chen, Y. Zhou, D-X. Wen, and D-G. He: A new method to predict the metadynamic recrystallization behavior in a typical nickel-based superalloy. Appl. Phys. A: Mater. Sci. Process. 122(6), 601 (2016).

    Article  Google Scholar 

  27. G. Shen, S.L. Semiatin, and R. Shivpuri: Modeling microstructural development during the forging of Waspaloy. Metall. Mater. Trans. A 26(7), 1795 (1995).

    Article  Google Scholar 

  28. S.H. Zahiri, S.M. Byon, S-I. Kim, Y. Lee, and P.D. Hodgson: Static and metadynamic recrystallization of interstitial free steels during hot deformation. ISIJ Int. 44(11), 1918 (2004).

    Article  CAS  Google Scholar 

  29. A. Dehghan-Manshadi, J.J. Jonas, P.D. Hodgson, and M.R. Barnett: Correlation between the deformation and post-deformation softening behaviours in hot worked austenite. ISIJ Int. 48(2), 208 (2008).

    Article  CAS  Google Scholar 

  30. C.M. Sellars and J.A. Whiteman: Recrystallization and grain growth in hot rolling. Met. Sci. 13(3–4), 187 (1979).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (Nos. 51604058), the Fundamental Research Funds for the Central Universities of China, the Scientific Research Fund of Liaoning Provincial Education Department under Grant No. L2015120, the Open Research Fund from the State Key Laboratory of Rolling and Automation, Northeastern University (2015003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwen Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, C., Zhang, L., Shen, W. et al. The kinetics and microstructural evolution during metadynamic recrystallization of medium carbon Cr–Ni–Mo alloyed steel. Journal of Materials Research 32, 1367–1375 (2017). https://doi.org/10.1557/jmr.2017.76

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.76

Navigation