Skip to main content
Log in

Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

One conceptually different approach has been developed to synthesize Ti3+ self-doped TiO2−x mesocrystals to narrow the band gap of TiO2. This simple and economical one-pot solvothermal method uses TiCl3 and tetrabutyltitanate (TBT) as a precursor and exhibits practical application. Different morphology including uniform spindle shape, tetragonal bipyramid, and capsule-like mesocrystals can be tailored easily by tuning the precursor ratio of TiCl3 to TBT. We have shown that our band gap engineered TiO2−x exhibits unique mesocrystal phase and owns substantial high visible light driven photocatalytic activities. Electron paramagnetic resonance (EPR) studies of this sample verified the presence of oxygen centered radicals, namely, hydroxyl (·OH) and superoxide radicals (O2−·/·OOH). The catalysts have been characterized using transmission electron microscope, fluorescence spectra, Raman spectra, EPR, X-ray photoelectron spectroscopy, X-ray diffraction (XRD), Ultraviolet–visible absorption spectra, etc. It shows high catalytic stability. The findings of this work provide new insights for developing morphology tailored for visible light driven devices and other applications via controlled band gap engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9
FIG. 10
SCHEME 1
FIG. 11
FIG. 12

Similar content being viewed by others

References

  1. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358), 37 (1972).

    Article  CAS  Google Scholar 

  2. M.R. Hoffmann, S.T. Martin, W.Y. Choi, and D.W. Bahnemann: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 69 (1995).

    Article  CAS  Google Scholar 

  3. S.G. Kumar and L.G. Devi: Review on modified TiO2 photocatalysis under UV/visible Light: Selected results and related mechanisms on interfacial charge carrier transfer dynamics. J. Phys. Chem. A 115, 13211 (2011).

    Article  CAS  Google Scholar 

  4. X. Li, J. Yu, and M. Jaroniec: Hierarchical photocatalysts. Chem. Soc. Rev. 45, 2603 (2016).

    Article  CAS  Google Scholar 

  5. X. Li, J. Yu, J. Low, Y. Fang, J. Xiao, and X. Chen: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2015).

    Article  CAS  Google Scholar 

  6. E.M. Samsudin, S.B.A. Hamid, J.C. Juan, W.J. Basirun, and A.E. Kandjani: Surface modification of mixed-phase hydrogenated TiO2 and corresponding photocatalytic response. Appl. Surf. Sci. 359, 883 (2015).

    Article  CAS  Google Scholar 

  7. W.J. Ong, L.L. Tan, S.P. Chai, S.T. Yong, and A.R. Mohamed: Highly reactive {001} facets of TiO2-based composites: Synthesis, formation mechanism and characterization. Nanoscale 6, 1946 (2014).

    Article  CAS  Google Scholar 

  8. J. Seo, J.H. Noh, and S.I. Seok: Rational strategies for efficient perovskite solar cells. Acc. Chem. Res. 49, 562 (2016).

    Article  CAS  Google Scholar 

  9. S.N.R. Inturi, T. Boningari, M. Suidan, and P.G. Smirniotis: Visible-light-induced photodegradation of gas phase acetonitrile using aerosol-made transition metal (V, Cr, Fe, Co, Mn, Mo, Ni, Cu, Y, Ce, and Zr) doped TiO2. Appl. Catal., B 144, 333 (2014).

    Article  CAS  Google Scholar 

  10. W.Y. Choi, A. Termin, and M.R. Hoffmann: The role of metal-ion dopants in quantum-sized TiO2-correlation between photoreactivity and charge-carrier recombination dynamics. J. Phys. Chem. 98, 13669 (1994).

    Article  Google Scholar 

  11. S.Z. Khalajabadi, M.R.A. Kadir, S. Izman, and M.Z.M. Yusop: Facile fabrication of hydrophobic surfaces on mechanically alloyed-Mg/HA/TiO2/MgO bionanocomposites. Appl. Surf. Sci. 324, 380 (2015).

    Article  CAS  Google Scholar 

  12. X. Li, T. Xia, C. Xu, J. Murowchick, and X. Chen: Synthesis and photoactivity of nanostructured CdS-TiO2 composite catalysts. Catal. Today 225, 64 (2014).

    Article  CAS  Google Scholar 

  13. A.E. Giannakas, M. Antonopoulou, C. Daikopoulos, Y. Deligiannakis, and I. Konstantinou: Characterization and catalytic performance of B-doped, B-N co-doped and B-N-F tri-doped TiO2 towards simultaneous Cr(VI) reduction and benzoic acid oxidation. Appl. Catal., B 184, 44 (2016).

    Article  CAS  Google Scholar 

  14. R. Jaiswal, N. Patel, A. Dashora, R. Fernandes, M. Yadav, R. Edla, R.S. Varma, D.C. Kothari, B.L. Ahuja, and A. Miotello: Efficient Co-B-codoped TiO2 photocatalyst for degradation of organic water pollutant under visible light. Appl. Catal., B 183, 242 (2016).

    Article  CAS  Google Scholar 

  15. J.H. Park, S. Kim, and A.J. Bard: Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett. 6, 24 (2006).

    Article  CAS  Google Scholar 

  16. S. Banerjee, D.D. Dionysiou, and S.C. Pillai: Self-cleaning applications of TiO2 by photo-induced hydrophilicity and photocatalysis. Appl. Catal., B 176, 396 (2015).

    Article  CAS  Google Scholar 

  17. S. Ivanov, A. Barylyak, K. Besaha, A. Bund, Y. Bobitski, R. Wojnarowska-Nowak, I. Yaremchuk, and M. Kus-Liskiewicz: Synthesis, characterization, and photocatalytic properties of sulfur- and carbon-codoped TiO2 nanoparticles. Nanoscale Res. Lett. 11, 140 (2016).

    Article  CAS  Google Scholar 

  18. P. Zhang, M. Fujitsuka, and T. Majima: TiO2 mesocrystal with nitrogen and fluorine codoping during topochemical transformation: Efficient visible light induced photocatalyst with the codopants. Appl. Catal., B 185, 181 (2016).

    Article  CAS  Google Scholar 

  19. Y. Zhang, M. Creatore, Q-B. Ma, A. El Boukili, L. Gao, M.A. Verheijen, M.W.G.M. Verhoeven, and E.J.M. Hensen: Nitrogen-doping of bulk and nanotubular TiO2 photocatalysts by plasma-assisted atomic layer deposition. Appl. Surf. Sci. 330, 476 (2015).

    Article  CAS  Google Scholar 

  20. D. Qu, M. Zheng, P. Du, Y. Zhou, L.G. Zhang, D. Li, H.Q. Tan, Z. Zhao, Z.G. Xie, and Z.C. Sun: Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts. Nanoscale 5, 12272 (2013).

    Article  CAS  Google Scholar 

  21. J.C. Yu, J.G. Yu, W.K. Ho, Z.T. Jiang, and L.Z. Zhang: Effects of F-doping on the photocatalytic activity and microstructures of nanocrystalline TiO2 powders. Chem. Mater. 14, 3808 (2002).

    Article  CAS  Google Scholar 

  22. O. Elbanna, P. Zhang, M. Fujitsuka, and T. Majima: Facile preparation of nitrogen and fluorine codoped TiO2 mesocrystal with visible light photocatalytic activity. Appl. Catal., B 192, 80 (2016).

    Article  CAS  Google Scholar 

  23. E.M. Samsudin, S.B. Abd Hamid, J.C. Juan, W.J. Basirun, and G. Centi: Synergetic effects in novel hydrogenated F-doped TiO2 photocatalysts. Appl. Surf. Sci. 370, 380 (2016).

    Article  CAS  Google Scholar 

  24. X.B. Chen, L. Liu, P.Y. Yu, and S.S. Mao: Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746 (2011).

    Article  CAS  Google Scholar 

  25. K. Li, S.M. Gao, Q.Y. Wang, H. Xu, Z.Y. Wang, B.B. Huang, Y. Dai, and J. Lu: In situ reduced synthesis of Ti3+ self-doped TiO2/g-C3N4 heterojunctions with high photocatalytic performance under LED light irradiation. ACS Appl. Mater. Interfaces 7, 9023 (2015).

    Article  CAS  Google Scholar 

  26. Z.Q. Wang, B. Wen, Q.Q. Hao, L.M. Liu, C.Y. Zhou, X.C. Mao, X.F. Lang, W.J. Yin, D.X. Dai, A. Selloni, and X.M. Yang: Localized excitation of Ti3+ ions in the photoabsorption and photocatalytic activity of reduced rutile TiO2. J. Am. Chem. Soc. 137, 9146 (2015).

    Article  CAS  Google Scholar 

  27. Y. Chen, W.Z. Li, J.Y. Wang, Y.L. Gan, L. Liu, and M.T. Ju: Microwave-assisted ionic liquid synthesis of Ti3+ self-doped TiO2 hollow nanocrystals with enhanced visible-light photoactivity. Appl. Catal., B 191, 94 (2016).

    Article  CAS  Google Scholar 

  28. X. Chen, L. Liu, and F. Huang: Black titanium dioxide (TiO2) nanomaterials. Chem. Soc. Rev. 44, 1861 (2015).

    Article  CAS  Google Scholar 

  29. L. Liu and X. Chen: Titanium dioxide nanomaterials: Self-structural modifications. Chem. Rev. 114, 9890 (2014).

    Article  CAS  Google Scholar 

  30. D. Lu, G. Zhang, and Z. Wan: Visible-light-driven g-C3N4/Ti3+–TiO2 photocatalyst co-exposed {001} and {101} facets and its enhanced photocatalytic activities for organic pollutant degradation and Cr(VI) reduction. Appl. Surf. Sci. 358, 223 (2015).

    Article  CAS  Google Scholar 

  31. J. Tian, X. Hu, H. Yang, Y. Zhou, H. Cui, and H. Liu: High yield production of reduced TiO2 with enhanced photocatalytic activity. Appl. Surf. Sci. 360, 738 (2016).

    Article  CAS  Google Scholar 

  32. J. Wang, P. Yang, and B. Huang: Self-doped TiO2−x nanowires with enhanced photocatalytic activity: Facile synthesis and effects of the Ti3+. Appl. Surf. Sci. 356, 391 (2015).

    Article  CAS  Google Scholar 

  33. X. Liu, H. Xu, L.R. Grabstanowicz, S.M. Gao, Z.Z. Lou, W.J. Wang, B.B. Huang, Y. Dai, and T. Xu: Ti3+ self-doped TiO2−x anatase nanoparticles via oxidation of TiH2 in H2O2. Catal. Today 225, 80 (2014).

    Article  CAS  Google Scholar 

  34. A. Ali, I. Ruzybayev, E. Yassitepe, A. Karim, S.I. Shah, and A.S. Bhatti: Phase transformations in the pulsed laser deposition grown TiO2 thin films as a consequence of O-2 partial pressure and Nd doping. J. Phys. Chem. C 119, 11578 (2015).

    Article  CAS  Google Scholar 

  35. X. Chen, D.X. Zhao, K.W. Liu, C.R. Wang, L. Liu, B.H. Li, Z.Z. Zhang, and D.Z. Shen: Laser-modified black titanium oxide nanospheres and their photocatalytic activities under visible light. ACS Appl. Mater. Interfaces 7, 16070 (2015).

    Article  CAS  Google Scholar 

  36. L.Q. Wang, D.R. Baer, and M.H. Engelhard: Creation of variable concentrations of defects on TiO2(110) using low-density electron-beams. Surf. Sci. 320, 295 (1994).

    Article  CAS  Google Scholar 

  37. X.M. Zhou, N. Liu, and P. Schmuki: Ar+-ion bombardment of TiO2 nanotubes creates co-catalytic effect for photocatalytic open circuit hydrogen evolution. Electrochem. Commun. 49, 60 (2014).

    Article  CAS  Google Scholar 

  38. C. Di Valentin, G. Pacchioni, and A. Selloni: Reduced and n-type doped TiO2: Nature of Ti3+ species. J. Phys. Chem. C 113, 20543 (2009).

    Article  CAS  Google Scholar 

  39. I. Justicia, P. Ordejon, G. Canto, J.L. Mozos, J. Fraxedas, G.A. Battiston, R. Gerbasi, and A. Figueras: Designed self-doped titanium oxide thin films for efficient visible-light photocatalysis. Adv. Mater. 14, 1399 (2002).

    Article  CAS  Google Scholar 

  40. H. Colfen and M. Antonietti: Mesocrystals: Inorganic superstructures made by highly parallel crystallization and controlled alignment. Angew. Chem., Int. Ed. 44, 5576 (2005).

    Article  CAS  Google Scholar 

  41. T.H. Han, H.G. Wang, and X.M. Zheng: Gold nanoparticle incorporation into nanoporous anatase TiO2 mesocrystal using a simple deposition-precipitation method for photocatalytic applications. RSC Adv. 6, 7829 (2016).

    Article  CAS  Google Scholar 

  42. F.F. Chen, F.L. Cao, H.X. Li, and Z.F. Bian: Exploring the important role of nanocrystals orientation in TiO2 superstructure on photocatalytic performances. Langmuir 31, 3494 (2015).

    Article  CAS  Google Scholar 

  43. Z.S. Hong, M.D. Wei, T.B. Lan, L.L. Jiang, and G.Z. Cao: Additive-free synthesis of unique TiO2 mesocrystals with enhanced lithium-ion intercalation properties. Energy Environ. Sci. 5, 5408 (2012).

    Article  CAS  Google Scholar 

  44. T.S. Yang, M.C. Yang, C.B. Shiu, W.K. Chang, and M.S. Wong: Effect of N-2 ion flux on the photocatalysis of nitrogen-doped titanium oxide films by electron-beam evaporation. Appl. Surf. Sci. 252, 3729 (2006).

    Article  CAS  Google Scholar 

  45. A.F. Carley, P.R. Chalker, J.C. Riviere, and M.W. Roberts: The identification and characterisation of mixed oxidation states at oxidised titanium surfaces by analysis of X-ray photoelectron spectra. J. Chem. Soc., Faraday Trans. 1 83, 351 (1987).

    Article  CAS  Google Scholar 

  46. E. György, A. Pérez del Pino, P. Serra, and J.L. Morenza: Depth profiling characterisation of the surface layer obtained by pulsed Nd:YAG laser irradiation of titanium in nitrogen. Surf. Coat. Technol. 173, 265 (2003).

    Article  CAS  Google Scholar 

  47. J.M. Fontmorin, R.C.B. Castillo, W.Z. Tang, and M. Sillanpaa: Stability of 5,5-dimethyl-1-pyrroline-N-oxide as a spin-trap for quantification of hydroxyl radicals in processes based on Fenton reaction. Water Res. 99, 24 (2016).

    Article  CAS  Google Scholar 

  48. A.S.W. Li, K.B. Cummings, H.P. Rothling, G.R. Buettner, and C.F. Chignell: A spin-trapping database implemented on the IBM PC/AT. J. Magn. Reson. 79, 140 (1988).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by grants from the National Natural Science Foundation of China (No. 21271155 and 21473161), Zhejiang Provincial Natural Science Foundation of China (LZ17B030001), Zhejiang Provincial Top Key Academic Discipline of Chemical Engineering and Technology, Alexander von Humboldt Foundation (No. 1141172), and Zhejiang SCI-TECH University for 521 distinguished scholar’s scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huigang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, F., Han, T., Wang, H. et al. Morphology evolution and visible light driven photocatalysis study of Ti3+ self-doped TiO2−x nanocrystals. Journal of Materials Research 32, 1563–1572 (2017). https://doi.org/10.1557/jmr.2017.49

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.49

Navigation