Skip to main content

Advertisement

Log in

Indentation response of a 3D non-woven carbon-fibre composite

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The indentation response of a 3D noninterlaced composite comprising three sets of orthogonal carbon-fibre tows in an epoxy matrix is investigated. The 3D composites have a near isotropic and ductile indentation response. The deformation mode includes the formation of multiple kinks in the tows aligned with the indentation direction and shearing of the orthogonally oriented tows. Finite element (FE) calculations are also reported wherein tows in one direction are explicitly modeled with the other two sets of orthogonal tows and the matrix pockets treated as an effective homogenous medium. The calculations capture the indentation response in the direction of the explicitly modeled tows with excellent fidelity but under-predict the indentation strength in the other directions. In contrast to anisotropic and brittle laminated composites, 3D noninterlaced composites have a near isotropic and ductile indentation response making them strong candidates for application as materials to resist impact loading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

Notes

  1. The acronym NOOB stands for Non-interlacing, Orientating Orthogonally and Binding.23

  2. Nils Malmgren AB, P.O. Box 2039 S-442 02 Ytterby Sweden.

References

  1. W.J. Cantwell and J. Morton: Comparison of the low and high velocity impact response of CFRP. Composites 20, 545 (1989).

    Article  CAS  Google Scholar 

  2. W.J. Cantwell and J. Morton: The impact resistance of composite materials—A review. Composites 22, 347 (1991).

    Article  CAS  Google Scholar 

  3. C.C. Poe, H.B. Dexter, and I.S. Raju: Review of the NASA textile composites research. J. Aircr. 36, 876 (1999).

    Article  Google Scholar 

  4. J.C. Prichard and P.J. Hogg: The role of impact damage in post-impact compression testing. Composites 21, 503 (1990).

    Article  CAS  Google Scholar 

  5. K. Dransfield, C. Baillie, and Y. Mai: Improving the delamination resistance of CFRP by stitching—A review. Compos. Sci. Technol. 50, 305 (1994).

    Article  Google Scholar 

  6. G. Freitas, C. Magee, P. Dardzinski, and T. Fusco: Fibre insertion process for improved damage tolerance in aircraft laminates. J. Adv. Mater. 25, 36 (1994).

    Google Scholar 

  7. A.P. Mouritz: Review of z-pinned composite laminates. Composites, Part A 38, 2383 (2007).

    Article  Google Scholar 

  8. T. George, V.S. Deshpande, and H.N.G. Wadley: Hybrid carbon fibre composite lattice truss structures. Composites, Part A 65, 135 (2014).

    Article  CAS  Google Scholar 

  9. A.J. Malcom, M.T. Aronson, V.S. Deshpande, and H.N.G. Wadley: Compressive response of glass fibre composite sandwich structures. Composites, Part A 54, 88 (2013).

    Article  CAS  Google Scholar 

  10. R. Kamiya, B.A. Cheeseman, P. Popper, and T.W. Chou: Some recent advances in the fabrication and design of three-dimensional textile preforms: A review. Compos. Sci. Technol. 60, 33 (2000).

    Article  Google Scholar 

  11. N. Khokar: Noobing: A nonwoven 3D fabric-forming process explained. J. Text. Inst. 93, 52 (2002).

    Article  Google Scholar 

  12. J.P. Quinn, A.T. McIlhagger, and R. McIlhagger: Examination of the failure of 3D woven composites. Composites, Part A 39, 273 (2008).

    Article  Google Scholar 

  13. R. McIlhagger, J.P. Quinn, A.T. McIlhagger, S. Wilson, D. Simpson, and W. Wenger: The influence of binder tow density on the mechanical properties of spatially reinforced composites. Part 1—Impact resistance. Composites, Part A 38, 795 (2007).

    Article  Google Scholar 

  14. R. McIlhagger, J.P. Quinn, A.T. McIlhagger, S. Wilson, D. Simpson, and W. Wenger: The influence of binder tow density on the mechanical properties of spatially reinforced composites. Part 2—Mechanical properties. Composites, Part A 39, 334 (2008).

    Article  Google Scholar 

  15. P. Tan, L. Tong, G.P. Steven, and T. Ishikawa: Behavior of 3D orthogonal woven CFRP composites. Part I. Experimental investigation. Composites, Part A 31, 259 (2000).

    Article  Google Scholar 

  16. W.S. Kuo and T.H. Ko: Compressive damage in 3-axis orthogonal fabric composites. Composites, Part A 31, 1091 (2000).

    Article  Google Scholar 

  17. E. Abisset, F. Daghia, X.C. Sun, M.R. Wisnom, and S.R. Hallett: Interaction of inter- and intralaminar damage in scaled quasi-static indentation tests: Part 1—Experiments. Compos. Struct. 136, 712 (2016).

    Article  Google Scholar 

  18. S.R. Swanson: Limits of quasi-static solutions in impact of composite structures. Compos. Eng. 2, 261 (1992).

    Article  Google Scholar 

  19. A. Wagih, P. Maimi, E.V. Gonzalez, N. Blanco, J.R.S. de Aja, F.M. de la Escalera, R. Olsson, and E. Alvarez: Damage sequence in thin-ply composite laminates under out-of-plane loading. Composites, Part A 87, 66 (2016).

    Article  CAS  Google Scholar 

  20. Y.S. Kwon and B.V. Sankar: Indentation-flexure and low-velocity impact damage in graphite epoxy laminates. J. Compos. Technol. Res. 15, 101 (1993).

    Article  CAS  Google Scholar 

  21. C. Bouvet, S. Rivallant, and J.J. Barrau: Low velocity impact modeling in composite laminates capturing permanent indentation. Compos. Sci. Technol. 72, 1977 (2012).

    Article  CAS  Google Scholar 

  22. S. Das, K. Kandan, S. Kazemahvazi, H.N.G. Wadley, and V.S. Deshpande: Compressive response of a 3D non-woven carbon-fibre composite. Int. J. Solids Struct., doi: https://doi.org/10.1016/j.ijsolstr.2017.12.011 (2017).

  23. N. Khokar: 3D fabric-forming processes: Distinguishing between 2D-weaving, 3D-weaving and an unspecified non-interlacing process. J. Text. Inst. 87, 97 (1996).

    Article  Google Scholar 

  24. N. Khokar: A 3D fabric and a method and apparatus for producing such a 3D fabric. Patent number WO2013139401 A1 (2013).

  25. Hexcel: HexPly® 8552-Product Data Sheet—EU Version 1 (2016), datasheet available at: http://www.hexcel.com/user_area/content_media/raw/HexPly_8552_eu_DataSheet.pdf.

  26. B.P. Russell, T. Liu, N.A. Fleck, and V.S. Deshpande: Quasi-static three-point bending of carbon fibre sandwich beams with square honeycomb cores. J. Appl. Mech. 78, 031008–1 (2011).

    Article  Google Scholar 

  27. P.M. Sargent and M.F. Ashby: Indentation creep. Mater. Sci. Technol. 8, 594 (1992).

    Article  CAS  Google Scholar 

  28. J.P. Attwood, S.N. Khaderi, K. Karthikeyan, N.A. Fleck, M.R. O’Masta, H.N.G. Wadley, and V.S. Deshpande: The out-of-plane compressive response of Dyneema composites. J. Mech. Phys. Solids 70, 200 (2014).

    Article  Google Scholar 

  29. J.P. Attwood, B. Russell, H.N.G. Wadley, and V.S. Deshpande: Mechanisms of the penetration of ultra-high molecular weight polyethylene composite beams. Int. J. Impact Eng. 93, 153 (2016).

    Article  Google Scholar 

  30. B. Yu, K. Karthikeyan, V.S. Deshpande, and N.A. Fleck: Perforation resistance of CFRP beams to quasi-static and ballistic loading: The role of matrix strength. Int. J. Impact Eng. 108, 389 (2017).

    Article  Google Scholar 

  31. R. Hill: A theory of the yielding and plastic flow of aniosotropic metals. Proc. R. Soc. A 193, 281 (1948).

    CAS  Google Scholar 

  32. S. Kyriakides, R. Arseculeratne, E.J. Perry, and K.M. Liechti: On the compressive failure of fibre reinforced composites. Int. J. Solids Struct. 32, 689 (1995).

    Article  Google Scholar 

  33. S. Kyriakides and A.E. Ruff: Aspects of the failure and postfailure of fibre composites in compression. J. Compos. Mater. 31, 1633 (1997).

    Article  CAS  Google Scholar 

  34. P.M. Moran, X.H. Liu, and C.F. Shih: Kink band formation and band broadening in fibre composites under compressive loading. Acta Metall. Mater. 43, 2943 (1995).

    Article  CAS  Google Scholar 

  35. M.R. O’Masta, D.H. Crayton, V.S. Deshpande, and H.N.G. Wadley: Indentation of polyethylene laminates by a flat-bottomed cylindrical punch. Composites, Part A 80, 138 (2016).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the Office of Naval Research (ONR) for their financial support through grant number N62909-16-1-2127 on Dynamic performance of 3D assembled composite structures (program managers Dr. Joong Kim & Dr. Judah Goldwasser).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikram S. Deshpande.

Additional information

End Notes

a. The acronym NOOB stands for Non-interlacing, Orientating Orthogonally and Binding.23

b. Nils Malmgren AB, P.O. Box 2039 S-442 02 Ytterby Sweden.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, S., Kandan, K., Kazemahvazi, S. et al. Indentation response of a 3D non-woven carbon-fibre composite. Journal of Materials Research 33, 317–329 (2018). https://doi.org/10.1557/jmr.2017.481

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.481

Navigation