Abstract
Si nanoparticles and multi-walled carbon nanotubes (MWNTs) were combined using the simple, inexpensive, and scalable approach involving ultrasonication and positive-pressure filtration to generate binder-free freestanding flexible Si-MWNT (Si-MW) composite paper anodes for Li-ion batteries. Through controlling the Si/carbon nanotube (CNT) weight ratio, the composite with 3:2 Si/CNT ratio exhibited the optimal balance between the high capacity of SiNPs and high conductivity and structural stabilization quality of MWNTs, leading to high rate capability as well as specific capacity and cyclability surpassing the conventional slurry-cast SiNP electrode using binder and current collector and other complicated freestanding Si/carbon composite designs. After 100 cycles, our electrode retained a capacity of 1170 mA h/g at 100 mA/g and 750 mA h/g at 500 mA/g. Moreover, a different electrolyte composition enabled a reversible capacity of 1300 mA h/g at 100 mA/g after 100 cycles. The freestanding feature of our electrodes is promising for enhanced energy density of Li-ion cells.
Similar content being viewed by others
References
J.R. Szczech and S. Jin: Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4, 56 (2011).
H. Wu and Y. Cui: Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414 (2012).
D. Ma, Z. Cao, and A. Hu: Si-based anode materials for Li-ion batteries: A mini review. Nano-Micro Lett. 6, 347 (2014).
P.K. Alaboina, J-S. Cho, and S-J. Cho: Engineering and optimization of silicon–iron–manganese nanoalloy electrode for enhanced lithium-ion battery. Nano-Micro Lett. 9, 41, doi: https://doi.org/10.1007/s40820-017-0142-8 (2017).
C.K. Chan, R.N. Patel, M.J. O’Connell, B.A. Korgel, and Y. Cui: Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 4, 1443 (2010).
C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, and Y. Cui: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2008).
M.Y. Ge, J.P. Rong, X. Fang, and C.W. Zhou: Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12, 2318 (2012).
T. Hanrath and B.A. Korgel: Supercritical fluid–liquid–solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals. Adv. Mater. 15, 437 (2003).
N. Liu, L.B. Hu, M.T. McDowell, A. Jackson, and Y. Cui: Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5, 6487 (2011).
J.W. Choi, L. Hu, L. Cui, J.R. McDonough, and Y. Cui: Metal current collector-free freestanding silicon–carbon 1D nanocomposites for ultralight anodes in lithium ion batteries. J. Power Sources 195, 8311 (2010).
V. Etacheri, O. Haik, Y. Goffer, G.A. Roberts, I.C. Stefan, R. Fasching, and D. Aurbach: Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir 28, 965 (2012).
J.P. Rong, X. Fang, M.Y. Ge, H.T. Chen, J. Xu, and C.W. Zhou: Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes. Nano Res. 6, 182 (2013).
H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L.B. Hu, and Y. Cui: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 310 (2012).
M.Y. Ge, J.P. Rong, X. Fang, A.Y. Zhang, Y.H. Lu, and C.W. Zhou: Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 6, 174 (2013).
S. Iwamura, H. Nishihara, and T. Kyotani: Fast and reversible lithium storage in a wrinkled structure formed from Si nanoparticles during lithiation/delithiation cycling. J. Power Sources 222, 400 (2013).
J.K. Lee, K.B. Smith, C.M. Hayner, and H.H. Kung: Silicon nanoparticles–graphene paper composites for Li ion battery anodes. Chem. Commun. 46, 2025 (2010).
X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, and J.Y. Huang: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522 (2012).
A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin: High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353 (2010).
Y.S. Kim, K.W. Kim, D. Cho, N.S. Hansen, J. Lee, and Y.L. Joo: Silicon-rich carbon hybrid nanofibers from water-based spinning: The synergy between silicon and carbon for Li-ion battery anode application. ChemElectroChem. 1, 220 (2014).
W. Sun, R. Hu, H. Liu, M. Zeng, L. Yang, H. Wang, and M. Zhu: Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries. J. Power Sources 268, 610 (2014).
Y.M. Lin, K.C. Klavetter, P.R. Abel, N.C. Davy, J.L. Snider, A. Heller, and C.B. Mullins: High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries. Chem. Commun. 48, 7268 (2012).
C.C. Nguyen and B.L. Lucht: Comparative study of fluoroethylene carbonate and vinylene carbonate for silicon anodes in lithium ion batteries. J. Electrochem. Soc. 161, A1933 (2014).
W. Wang and P.N. Kumta: Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano 4, 2233 (2010).
W. Wang and P.N. Kumta: Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries. J. Power Sources 172, 650 (2007).
J. Smithyman, A. Moench, R. Liang, J.P. Zheng, B. Wang, and C. Zhang: Binder-free composite electrodes using carbon nanotube networks as a host matrix for activated carbon microparticles. Appl. Phys. A 107, 723 (2012).
L.F. Cui, L.B. Hu, J.W. Choi, and Y. Cui: Light-weight free-standing carbon nanotube–silicon films for anodes of lithium ion batteries. ACS Nano 4, 3671 (2010).
B.J. Landi, C.D. Cress, and R.P. Raffaelle: High energy density lithium-ion batteries with carbon nanotube anodes. J. Mater. Res. 25, 1636 (2010).
S.H. Ng, J. Wang, Z.P. Guo, J. Chen, G.X. Wang, and H.K. Liu: Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim. Acta 51, 23 (2005).
B.J. Landi, M.J. Ganter, C.M. Schauerman, C.D. Cress, and R.P. Raffaelle: Lithium ion capacity of single wall carbon nanotube paper electrodes. J. Phys. Chem. C 112, 7509 (2008).
S.Y. Chew, S.H. Ng, J.Z. Wang, P. Novák, F. Krumeich, S.L. Chou, J. Chen, and H.K. Liu: Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon 47, 2976 (2009).
R.A. DiLeo, S. Frisco, M.J. Ganter, R.E. Rogers, R.P. Raffaelle, and B.J. Landi: Hybrid germanium nanoparticle–single-wall carbon nanotube free-standing anodes for lithium ion batteries. J. Phys. Chem. C 115, 22609 (2011).
L.B. Hu, H. Wu, F.L. Mantia, Y. Yang, and Y. Cui: Thin, flexible secondary Li-ion paper batteries. ACS Nano 4, 5843 (2010).
M.W. Forney, M.J. Ganter, J.W. Staub, R.D. Ridgley, and B.J. Landi: Prelithiation of silicon–carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). Nano Lett. 13, 4158 (2013).
M.W. Forney, R.A. DiLeo, A. Raisanen, M.J. Ganter, J.W. Staub, R.E. Rogers, R.D. Ridgley, and B.J. Landi: High performance silicon free-standing anodes fabricated by low-pressure and plasma-enhanced chemical vapor deposition onto carbon nanotube electrodes. J. Power Sources 228, 270 (2013).
S.L. Chou, Y. Zhao, J.Z. Wang, Z.X. Chen, H.K. Liu, and S.X. Dou: Silicon/single-walled carbon nanotube composite paper as a flexible anode material for lithium ion batteries. J. Phys. Chem. C 114, 15862 (2010).
L. Yue, H. Zhong, and L. Zhang: Enhanced reversible lithium storage in a nano-Si/MWCNT free-standing paper electrode prepared by a simple filtration and post sintering process. Electrochim. Acta 76, 326 (2012).
L. Hu, H. Wu, Y. Gao, A. Cao, H. Li, J. McDough, X. Xie, M. Zhou, and Y. Cui: Silicon–carbon nanotube coaxial sponge as Li-ion anodes with high areal capacity. Adv. Energy Mater. 1, 523 (2011).
H.C. Tao, L.Z. Fan, Y.F. Mei, and X.H. Qu: Self-supporting Si/reduced graphene oxide nanocomposite films as anode for lithium ion batteries. Electrochem. Commun. 13, 1332 (2011).
J.Z. Wang, C. Zhong, S.L. Chou, and H.K. Liu: Flexible free-standing graphene–silicon composite film for lithium-ion batteries. Electrochem. Commun. 12, 1467 (2010).
X. Hu, Y. Jin, B. Zhu, Y. Tan, S. Zhang, L. Zong, Z. Lu, and J. Zhu: Free-standing graphene–encapsulated silicon nanoparticle aerogel as an anode for lithium ion batteries. ChemNanoMat 2, 671 (2016).
B. Li, S. Yang, S. Li, B. Wang, and J. Liu: From commercial sponge toward 3D graphene–silicon networks for superior lithium storage. Adv. Energy Mater. 5, 1500289 (2015).
M. Zhou, X. Li, B. Wang, Y. Zhang, J. Ning, Z. Xiao, X. Zhang, Y. Chang, and L. Zhi: High-performance silicon battery anodes enabled by engineering graphene assemblies. Nano Lett. 15, 6222 (2015).
X. Zhao, C.M. Hayner, M.C. Kung, and H.H. Kung: In-plane vacancy-enabled high-power Si–graphene composite electrode for lithium-ion batteries. Adv. Energy Mater. 1, 1079 (2011).
D. Nan, Z-H. Huang, R. Lv, Y. Lin, L. Yang, X. Yu, L. Ye, W. Shen, H. Sun, and F. Kang: Silicon-encapsulated hollow carbon nanofiber networks as binder-free anodes for lithium ion battery. J. Nanomater. 2014, 1 (2014).
M-S. Wang, W-L. Song, J. Wang, and L-Z. Fan: Highly uniform silicon nanoparticle/porous carbon nanofiber hybrids towards free-standing high-performance anodes for lithium-ion batteries. Carbon 82, 337 (2015).
A.K. Roy, M. Zhong, M.G. Schwab, A. Binder, S.S. Venkataraman, and Z. Tomovic: Preparation of a binder-free three-dimensional carbon foam/silicon composite as potential material for lithium ion battery anodes. ACS Appl. Mater. Interfaces 8, 7343 (2016).
K. Yao, R. Liang, and J.P. Zheng: Freestanding flexible Si nanoparticles–multiwalled carbon nanotubes composite anodes for Li-ion batteries and their prelithiation by stabilized Li metal powder. J. Electrochem. Energy Convers. Storage 13, 011004 (2016).
N-S. Choi, K.H. Yew, K.Y. Lee, M. Sung, H. Kim, and S-S. Kim: Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J. Power Sources 161, 1254 (2006).
J.J. Wu and W.R. Bennett: Fundamental investigation of Si anode in Li-ion cells. In Proceedings of 2012 IEEE Energytech (IEEE, Cleveland, Ohio, 2012); pp. 1, doi: https://doi.org/10.1109/EnergyTech.2012.6304667.
Z.C. Wang, J. Xu, W.H. Yao, Y.W. Yao, and Y. Yang: Fluoroethylene carbonate as an electrolyte additive for improving the performance of mesocarbon microbead electrode. ECS Trans. 41, 29 (2012).
Z. Favors, W. Wang, H.H. Bay, A. George, M. Ozkan, and C.S. Ozkan: Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries. Sci. Rep. 4, 1 (2014).
M.N. Obrovac and L. Christensen: Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7, A93 (2004).
M.N. Obrovac and L.J. Krause: Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103 (2007).
J. Li and J.R. Dahn: An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 154, A156 (2007).
T.D. Hatchard and J.R. Dahn: In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838 (2004).
J. Saint, M. Morcrette, D. Larcher, L. Laffont, S. Beattie, J.P. Pérès, D. Talaga, M. Couzi, and J.M. Tarascon: Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites. Adv. Funct. Mater. 17, 1765 (2007).
H. Nakahara, S-Y. Yoon, and S. Nutt: Effect of an additive to polysiloxane-based electrolyte on passive film formation on a graphite electrode. J. Power Sources 158, 600 (2006).
L. Chen, K. Wang, X. Xie, and J. Xie: Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. J. Power Sources 174, 538 (2007).
Z. Guo, Z. Zhao, H. Liu, and S. Dou: Electrochemical lithiation and de-lithiation of MWNT–Sn/SnNi nanocomposites. Carbon 43, 1392 (2005).
Y. Zhang, X. Zhang, H. Zhang, Z. Zhao, F. Li, C. Liu, and H. Cheng: Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochim. Acta 51, 4994 (2006).
K. Dokko, Y. Fujita, M. Mohamedi, M. Umeda, I. Uchida, and J. Selman: Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part II. Disordered carbon. Electrochim. Acta 47, 933 (2001).
ACKNOWLEDGMENTS
This work is supported by DOE Batteries for Advanced Transportation Technologies (BATT) Program through Pacific Northwest National Laboratory (PNNL) under contract No. 212964. The authors gratefully acknowledge Dr. Qiang Wu for his assistance and helpful discussions.
Author information
Authors and Affiliations
Corresponding author
Supplementary Material
Rights and permissions
About this article
Cite this article
Yao, K., Zheng, J.P. & Liang, Z. Binder-free freestanding flexible Si nanoparticle-multi-walled carbon nanotube composite paper anodes for high energy Li-ion batteries. Journal of Materials Research 33, 482–494 (2018). https://doi.org/10.1557/jmr.2017.475
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2017.475