Skip to main content

Advertisement

Log in

Binder-free freestanding flexible Si nanoparticle-multi-walled carbon nanotube composite paper anodes for high energy Li-ion batteries

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Si nanoparticles and multi-walled carbon nanotubes (MWNTs) were combined using the simple, inexpensive, and scalable approach involving ultrasonication and positive-pressure filtration to generate binder-free freestanding flexible Si-MWNT (Si-MW) composite paper anodes for Li-ion batteries. Through controlling the Si/carbon nanotube (CNT) weight ratio, the composite with 3:2 Si/CNT ratio exhibited the optimal balance between the high capacity of SiNPs and high conductivity and structural stabilization quality of MWNTs, leading to high rate capability as well as specific capacity and cyclability surpassing the conventional slurry-cast SiNP electrode using binder and current collector and other complicated freestanding Si/carbon composite designs. After 100 cycles, our electrode retained a capacity of 1170 mA h/g at 100 mA/g and 750 mA h/g at 500 mA/g. Moreover, a different electrolyte composition enabled a reversible capacity of 1300 mA h/g at 100 mA/g after 100 cycles. The freestanding feature of our electrodes is promising for enhanced energy density of Li-ion cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. J.R. Szczech and S. Jin: Nanostructured silicon for high capacity lithium battery anodes. Energy Environ. Sci. 4, 56 (2011).

    CAS  Google Scholar 

  2. H. Wu and Y. Cui: Designing nanostructured Si anodes for high energy lithium ion batteries. Nano Today 7, 414 (2012).

    CAS  Google Scholar 

  3. D. Ma, Z. Cao, and A. Hu: Si-based anode materials for Li-ion batteries: A mini review. Nano-Micro Lett. 6, 347 (2014).

    Google Scholar 

  4. P.K. Alaboina, J-S. Cho, and S-J. Cho: Engineering and optimization of silicon–iron–manganese nanoalloy electrode for enhanced lithium-ion battery. Nano-Micro Lett. 9, 41, doi: https://doi.org/10.1007/s40820-017-0142-8 (2017).

    Google Scholar 

  5. C.K. Chan, R.N. Patel, M.J. O’Connell, B.A. Korgel, and Y. Cui: Solution-grown silicon nanowires for lithium-ion battery anodes. ACS Nano 4, 1443 (2010).

    CAS  Google Scholar 

  6. C.K. Chan, H.L. Peng, G. Liu, K. McIlwrath, X.F. Zhang, R.A. Huggins, and Y. Cui: High-performance lithium battery anodes using silicon nanowires. Nat. Nanotechnol. 3, 31 (2008).

    CAS  Google Scholar 

  7. M.Y. Ge, J.P. Rong, X. Fang, and C.W. Zhou: Porous doped silicon nanowires for lithium ion battery anode with long cycle life. Nano Lett. 12, 2318 (2012).

    CAS  Google Scholar 

  8. T. Hanrath and B.A. Korgel: Supercritical fluid–liquid–solid (SFLS) synthesis of Si and Ge nanowires seeded by colloidal metal nanocrystals. Adv. Mater. 15, 437 (2003).

    CAS  Google Scholar 

  9. N. Liu, L.B. Hu, M.T. McDowell, A. Jackson, and Y. Cui: Prelithiated silicon nanowires as an anode for lithium ion batteries. ACS Nano 5, 6487 (2011).

    CAS  Google Scholar 

  10. J.W. Choi, L. Hu, L. Cui, J.R. McDonough, and Y. Cui: Metal current collector-free freestanding silicon–carbon 1D nanocomposites for ultralight anodes in lithium ion batteries. J. Power Sources 195, 8311 (2010).

    CAS  Google Scholar 

  11. V. Etacheri, O. Haik, Y. Goffer, G.A. Roberts, I.C. Stefan, R. Fasching, and D. Aurbach: Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes. Langmuir 28, 965 (2012).

    CAS  Google Scholar 

  12. J.P. Rong, X. Fang, M.Y. Ge, H.T. Chen, J. Xu, and C.W. Zhou: Coaxial Si/anodic titanium oxide/Si nanotube arrays for lithium-ion battery anodes. Nano Res. 6, 182 (2013).

    CAS  Google Scholar 

  13. H. Wu, G. Chan, J.W. Choi, I. Ryu, Y. Yao, M.T. McDowell, S.W. Lee, A. Jackson, Y. Yang, L.B. Hu, and Y. Cui: Stable cycling of double-walled silicon nanotube battery anodes through solid-electrolyte interphase control. Nat. Nanotechnol. 7, 310 (2012).

    CAS  Google Scholar 

  14. M.Y. Ge, J.P. Rong, X. Fang, A.Y. Zhang, Y.H. Lu, and C.W. Zhou: Scalable preparation of porous silicon nanoparticles and their application for lithium-ion battery anodes. Nano Res. 6, 174 (2013).

    CAS  Google Scholar 

  15. S. Iwamura, H. Nishihara, and T. Kyotani: Fast and reversible lithium storage in a wrinkled structure formed from Si nanoparticles during lithiation/delithiation cycling. J. Power Sources 222, 400 (2013).

    CAS  Google Scholar 

  16. J.K. Lee, K.B. Smith, C.M. Hayner, and H.H. Kung: Silicon nanoparticles–graphene paper composites for Li ion battery anodes. Chem. Commun. 46, 2025 (2010).

    CAS  Google Scholar 

  17. X.H. Liu, L. Zhong, S. Huang, S.X. Mao, T. Zhu, and J.Y. Huang: Size-dependent fracture of silicon nanoparticles during lithiation. ACS Nano 6, 1522 (2012).

    CAS  Google Scholar 

  18. A. Magasinski, P. Dixon, B. Hertzberg, A. Kvit, J. Ayala, and G. Yushin: High-performance lithium-ion anodes using a hierarchical bottom-up approach. Nat. Mater. 9, 353 (2010).

    CAS  Google Scholar 

  19. Y.S. Kim, K.W. Kim, D. Cho, N.S. Hansen, J. Lee, and Y.L. Joo: Silicon-rich carbon hybrid nanofibers from water-based spinning: The synergy between silicon and carbon for Li-ion battery anode application. ChemElectroChem. 1, 220 (2014).

    Google Scholar 

  20. W. Sun, R. Hu, H. Liu, M. Zeng, L. Yang, H. Wang, and M. Zhu: Embedding nano-silicon in graphene nanosheets by plasma assisted milling for high capacity anode materials in lithium ion batteries. J. Power Sources 268, 610 (2014).

    CAS  Google Scholar 

  21. Y.M. Lin, K.C. Klavetter, P.R. Abel, N.C. Davy, J.L. Snider, A. Heller, and C.B. Mullins: High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries. Chem. Commun. 48, 7268 (2012).

    CAS  Google Scholar 

  22. C.C. Nguyen and B.L. Lucht: Comparative study of fluoroethylene carbonate and vinylene carbonate for silicon anodes in lithium ion batteries. J. Electrochem. Soc. 161, A1933 (2014).

    Google Scholar 

  23. W. Wang and P.N. Kumta: Nanostructured hybrid silicon/carbon nanotube heterostructures: Reversible high-capacity lithium-ion anodes. ACS Nano 4, 2233 (2010).

    CAS  Google Scholar 

  24. W. Wang and P.N. Kumta: Reversible high capacity nanocomposite anodes of Si/C/SWNTs for rechargeable Li-ion batteries. J. Power Sources 172, 650 (2007).

    CAS  Google Scholar 

  25. J. Smithyman, A. Moench, R. Liang, J.P. Zheng, B. Wang, and C. Zhang: Binder-free composite electrodes using carbon nanotube networks as a host matrix for activated carbon microparticles. Appl. Phys. A 107, 723 (2012).

    CAS  Google Scholar 

  26. L.F. Cui, L.B. Hu, J.W. Choi, and Y. Cui: Light-weight free-standing carbon nanotube–silicon films for anodes of lithium ion batteries. ACS Nano 4, 3671 (2010).

    CAS  Google Scholar 

  27. B.J. Landi, C.D. Cress, and R.P. Raffaelle: High energy density lithium-ion batteries with carbon nanotube anodes. J. Mater. Res. 25, 1636 (2010).

    CAS  Google Scholar 

  28. S.H. Ng, J. Wang, Z.P. Guo, J. Chen, G.X. Wang, and H.K. Liu: Single wall carbon nanotube paper as anode for lithium-ion battery. Electrochim. Acta 51, 23 (2005).

    CAS  Google Scholar 

  29. B.J. Landi, M.J. Ganter, C.M. Schauerman, C.D. Cress, and R.P. Raffaelle: Lithium ion capacity of single wall carbon nanotube paper electrodes. J. Phys. Chem. C 112, 7509 (2008).

    CAS  Google Scholar 

  30. S.Y. Chew, S.H. Ng, J.Z. Wang, P. Novák, F. Krumeich, S.L. Chou, J. Chen, and H.K. Liu: Flexible free-standing carbon nanotube films for model lithium-ion batteries. Carbon 47, 2976 (2009).

    CAS  Google Scholar 

  31. R.A. DiLeo, S. Frisco, M.J. Ganter, R.E. Rogers, R.P. Raffaelle, and B.J. Landi: Hybrid germanium nanoparticle–single-wall carbon nanotube free-standing anodes for lithium ion batteries. J. Phys. Chem. C 115, 22609 (2011).

    CAS  Google Scholar 

  32. L.B. Hu, H. Wu, F.L. Mantia, Y. Yang, and Y. Cui: Thin, flexible secondary Li-ion paper batteries. ACS Nano 4, 5843 (2010).

    CAS  Google Scholar 

  33. M.W. Forney, M.J. Ganter, J.W. Staub, R.D. Ridgley, and B.J. Landi: Prelithiation of silicon–carbon nanotube anodes for lithium ion batteries by stabilized lithium metal powder (SLMP). Nano Lett. 13, 4158 (2013).

    CAS  Google Scholar 

  34. M.W. Forney, R.A. DiLeo, A. Raisanen, M.J. Ganter, J.W. Staub, R.E. Rogers, R.D. Ridgley, and B.J. Landi: High performance silicon free-standing anodes fabricated by low-pressure and plasma-enhanced chemical vapor deposition onto carbon nanotube electrodes. J. Power Sources 228, 270 (2013).

    CAS  Google Scholar 

  35. S.L. Chou, Y. Zhao, J.Z. Wang, Z.X. Chen, H.K. Liu, and S.X. Dou: Silicon/single-walled carbon nanotube composite paper as a flexible anode material for lithium ion batteries. J. Phys. Chem. C 114, 15862 (2010).

    CAS  Google Scholar 

  36. L. Yue, H. Zhong, and L. Zhang: Enhanced reversible lithium storage in a nano-Si/MWCNT free-standing paper electrode prepared by a simple filtration and post sintering process. Electrochim. Acta 76, 326 (2012).

    CAS  Google Scholar 

  37. L. Hu, H. Wu, Y. Gao, A. Cao, H. Li, J. McDough, X. Xie, M. Zhou, and Y. Cui: Silicon–carbon nanotube coaxial sponge as Li-ion anodes with high areal capacity. Adv. Energy Mater. 1, 523 (2011).

    CAS  Google Scholar 

  38. H.C. Tao, L.Z. Fan, Y.F. Mei, and X.H. Qu: Self-supporting Si/reduced graphene oxide nanocomposite films as anode for lithium ion batteries. Electrochem. Commun. 13, 1332 (2011).

    CAS  Google Scholar 

  39. J.Z. Wang, C. Zhong, S.L. Chou, and H.K. Liu: Flexible free-standing graphene–silicon composite film for lithium-ion batteries. Electrochem. Commun. 12, 1467 (2010).

    CAS  Google Scholar 

  40. X. Hu, Y. Jin, B. Zhu, Y. Tan, S. Zhang, L. Zong, Z. Lu, and J. Zhu: Free-standing graphene–encapsulated silicon nanoparticle aerogel as an anode for lithium ion batteries. ChemNanoMat 2, 671 (2016).

    CAS  Google Scholar 

  41. B. Li, S. Yang, S. Li, B. Wang, and J. Liu: From commercial sponge toward 3D graphene–silicon networks for superior lithium storage. Adv. Energy Mater. 5, 1500289 (2015).

    Google Scholar 

  42. M. Zhou, X. Li, B. Wang, Y. Zhang, J. Ning, Z. Xiao, X. Zhang, Y. Chang, and L. Zhi: High-performance silicon battery anodes enabled by engineering graphene assemblies. Nano Lett. 15, 6222 (2015).

    CAS  Google Scholar 

  43. X. Zhao, C.M. Hayner, M.C. Kung, and H.H. Kung: In-plane vacancy-enabled high-power Si–graphene composite electrode for lithium-ion batteries. Adv. Energy Mater. 1, 1079 (2011).

    CAS  Google Scholar 

  44. D. Nan, Z-H. Huang, R. Lv, Y. Lin, L. Yang, X. Yu, L. Ye, W. Shen, H. Sun, and F. Kang: Silicon-encapsulated hollow carbon nanofiber networks as binder-free anodes for lithium ion battery. J. Nanomater. 2014, 1 (2014).

    Google Scholar 

  45. M-S. Wang, W-L. Song, J. Wang, and L-Z. Fan: Highly uniform silicon nanoparticle/porous carbon nanofiber hybrids towards free-standing high-performance anodes for lithium-ion batteries. Carbon 82, 337 (2015).

    CAS  Google Scholar 

  46. A.K. Roy, M. Zhong, M.G. Schwab, A. Binder, S.S. Venkataraman, and Z. Tomovic: Preparation of a binder-free three-dimensional carbon foam/silicon composite as potential material for lithium ion battery anodes. ACS Appl. Mater. Interfaces 8, 7343 (2016).

    CAS  Google Scholar 

  47. K. Yao, R. Liang, and J.P. Zheng: Freestanding flexible Si nanoparticles–multiwalled carbon nanotubes composite anodes for Li-ion batteries and their prelithiation by stabilized Li metal powder. J. Electrochem. Energy Convers. Storage 13, 011004 (2016).

    Google Scholar 

  48. N-S. Choi, K.H. Yew, K.Y. Lee, M. Sung, H. Kim, and S-S. Kim: Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode. J. Power Sources 161, 1254 (2006).

    CAS  Google Scholar 

  49. J.J. Wu and W.R. Bennett: Fundamental investigation of Si anode in Li-ion cells. In Proceedings of 2012 IEEE Energytech (IEEE, Cleveland, Ohio, 2012); pp. 1, doi: https://doi.org/10.1109/EnergyTech.2012.6304667.

    Google Scholar 

  50. Z.C. Wang, J. Xu, W.H. Yao, Y.W. Yao, and Y. Yang: Fluoroethylene carbonate as an electrolyte additive for improving the performance of mesocarbon microbead electrode. ECS Trans. 41, 29 (2012).

    Google Scholar 

  51. Z. Favors, W. Wang, H.H. Bay, A. George, M. Ozkan, and C.S. Ozkan: Stable cycling of SiO2 nanotubes as high-performance anodes for lithium-ion batteries. Sci. Rep. 4, 1 (2014).

    Google Scholar 

  52. M.N. Obrovac and L. Christensen: Structural changes in silicon anodes during lithium insertion/extraction. Electrochem. Solid-State Lett. 7, A93 (2004).

    CAS  Google Scholar 

  53. M.N. Obrovac and L.J. Krause: Reversible cycling of crystalline silicon powder. J. Electrochem. Soc. 154, A103 (2007).

    CAS  Google Scholar 

  54. J. Li and J.R. Dahn: An in situ X-ray diffraction study of the reaction of Li with crystalline Si. J. Electrochem. Soc. 154, A156 (2007).

    CAS  Google Scholar 

  55. T.D. Hatchard and J.R. Dahn: In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon. J. Electrochem. Soc. 151, A838 (2004).

    CAS  Google Scholar 

  56. J. Saint, M. Morcrette, D. Larcher, L. Laffont, S. Beattie, J.P. Pérès, D. Talaga, M. Couzi, and J.M. Tarascon: Towards a fundamental understanding of the improved electrochemical performance of silicon-carbon composites. Adv. Funct. Mater. 17, 1765 (2007).

    CAS  Google Scholar 

  57. H. Nakahara, S-Y. Yoon, and S. Nutt: Effect of an additive to polysiloxane-based electrolyte on passive film formation on a graphite electrode. J. Power Sources 158, 600 (2006).

    CAS  Google Scholar 

  58. L. Chen, K. Wang, X. Xie, and J. Xie: Effect of vinylene carbonate (VC) as electrolyte additive on electrochemical performance of Si film anode for lithium ion batteries. J. Power Sources 174, 538 (2007).

    CAS  Google Scholar 

  59. Z. Guo, Z. Zhao, H. Liu, and S. Dou: Electrochemical lithiation and de-lithiation of MWNT–Sn/SnNi nanocomposites. Carbon 43, 1392 (2005).

    CAS  Google Scholar 

  60. Y. Zhang, X. Zhang, H. Zhang, Z. Zhao, F. Li, C. Liu, and H. Cheng: Composite anode material of silicon/graphite/carbon nanotubes for Li-ion batteries. Electrochim. Acta 51, 4994 (2006).

    CAS  Google Scholar 

  61. K. Dokko, Y. Fujita, M. Mohamedi, M. Umeda, I. Uchida, and J. Selman: Electrochemical impedance study of Li-ion insertion into mesocarbon microbead single particle electrode: Part II. Disordered carbon. Electrochim. Acta 47, 933 (2001).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by DOE Batteries for Advanced Transportation Technologies (BATT) Program through Pacific Northwest National Laboratory (PNNL) under contract No. 212964. The authors gratefully acknowledge Dr. Qiang Wu for his assistance and helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Yao.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, K., Zheng, J.P. & Liang, Z. Binder-free freestanding flexible Si nanoparticle-multi-walled carbon nanotube composite paper anodes for high energy Li-ion batteries. Journal of Materials Research 33, 482–494 (2018). https://doi.org/10.1557/jmr.2017.475

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.475

Navigation