Skip to main content
Log in

Quantum-kinetic perspective on photovoltaic device operation in nanostructure-based solar cells

  • Invited Review
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The implementation of a wide range of high-efficiency solar cell concepts is based on nanostructures with configuration-tunable optoelectronic properties. On the other hand, effective nano-optical light-trapping concepts enable the use of ultra-thin absorber architectures. In both cases, the local density of electronic and optical states deviates strongly from that of a homogeneous bulk material. At the same time, nonlocal and coherent phenomena like tunneling or ballistic transport become increasingly relevant. As a consequence, the semiclassical, diffusive bulk picture may no longer be appropriate to describe the physics of such devices. In this review, we provide a quantum-kinetic perspective on photovoltaic device operation that reaches beyond the limits of the standard simulation models for bulk solar cells. Deviations from bulk physics are assessed in ultra-thin film and nanostructure-based solar cell architectures by comparing predictions of semiclassical models with those of a more fundamental description based on nonequilibrium quantum statistical mechanics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. K. Barnham and G. Duggan: A new approach to high-efficiency multi-band-gap solar cells. J. Appl. Phys. 67, 3490 (1990).

    CAS  Google Scholar 

  2. M.A. Green: Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Prog. Photovoltaics 9, 123 (2001).

    CAS  Google Scholar 

  3. M.A. Green: Potential for low dimensional structures in photovoltaics. Mater. Sci. Eng., B 74, 118 (2000).

    Google Scholar 

  4. A. Marti, L. Cuadra, and A. Luque: Partial filling of a quantum dot intermediate band for solar cells. IEEE Trans. Electron Devices 48, 2394 (2001).

    CAS  Google Scholar 

  5. G. Conibeer, D. König, M. Green, and J. Guillemoles: Slowing of carrier cooling in hot carrier solar cells. Thin Solid Films 516, 6948 (2008).

    CAS  Google Scholar 

  6. R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, and A.L. Efros: Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865 (2005).

    CAS  Google Scholar 

  7. H.A. Atwater and A. Polman: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010).

    Article  CAS  Google Scholar 

  8. S. Mokkapati and K.R. Catchpole: Nanophotonic light trapping in solar cells. J. Appl. Phys. 112, 101101 (2012).

    Google Scholar 

  9. J.G.J. Adams, W. Elder, G. Hill, J.S. Roberts, K.W.J. Barnham, and N.J. Ekins-Daukes: Higher limiting efficiencies for nanostructured solar cells. Proc. SPIE 7597, 759705 (2010).

    Google Scholar 

  10. U. Aeberhard: Simulation of nanostructure-based high-efficiency solar cells: Challenges, existing approaches, and future directions. IEEE J. Sel. Top. Quantum Electron. 19, 4000411 (2013).

    Google Scholar 

  11. G. Araújo, A. Martí, F. Ragay, and J. Wolter: Efficiency of multiple quantum well solar cells. In Proceedings 12th European Photovoltaic Solar Energy Conference, R. Hill, W. Palz, and P. Helm, eds. (James & James, Amsterdam, the Netherlands, 1994); p. 1481.

    Google Scholar 

  12. P. Würfel: The chemical potential of radiation. J. Phys. C: Solid State Phys. 15, 3967 (1982).

    Google Scholar 

  13. U. Rau: Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).

    Google Scholar 

  14. L.E. Henrickson: Nonequilibrium photocurrent modeling in resonant tunneling photodetectors. J. Appl. Phys. 91, 6273 (2002).

    CAS  Google Scholar 

  15. M.A. Naser, M.J. Deen, and D.A. Thompson: Spectral function and responsivity of resonant tunneling and superlattice quantum dot infrared photodetectors using green’s function. J. Appl. Phys. 102, 083108 (2007).

    Google Scholar 

  16. M.F. Pereira and K. Henneberger: Microscopic theory for the influence of Coulomb correlations in the light-emission properties of semiconductor quantum wells. Phys. Rev. B 58, 2064 (1998).

    CAS  Google Scholar 

  17. S-C. Lee and A. Wacker: Nonequilibrium Green’s function theory for transport and gain properties of quantum cascade structures. Phys. Rev. B 66, 245314 (2002).

    Google Scholar 

  18. T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch: Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers. Phys. Rev. B 79, 195323 (2009).

    Google Scholar 

  19. S. Steiger, R.G. Veprek, and B. Witzigmann: Electroluminescence from a quantum-well LED using NEGF. In Proceedings of the 13th International Workshop on Computational Electronics (IWCE) (2009).

  20. D.A. Stewart and F. Leonard: Energy conversion efficiency in nanotube optoelectronics. Nano Lett. 5, 219 (IEEE, Beijing, China, 2005).

    CAS  Google Scholar 

  21. U. Aeberhard and R.H. Morf: Microscopic nonequilibrium theory of quantum well solar cells. Phys. Rev. B 77, 125343 (2008).

    Google Scholar 

  22. U. Aeberhard: Theory and simulation of photogeneration and transport in Si–SiOx superlattice absorbers. Nanoscale Res. Lett. 6, 242 (2011).

    Google Scholar 

  23. A. Buin, A. Verma, and S. Saini: Optoelectronic response calculations in the framework of k·p coupled to non-equilibrium Green’s functions for one-dimensional systems in the ballistic limit. J. Appl. Phys. 114, 033111 (2013).

    Google Scholar 

  24. U. Aeberhard: Effective microscopic theory of quantum dot superlattice solar cells. Opt. Quantum Electron. 44, 133 (2012).

    CAS  Google Scholar 

  25. A. Berbezier and U. Aeberhard: Impact of nanostructure configuration on the photovoltaic performance of quantum-dot arrays. Phys. Rev. Appl. 4, 044008 (2015).

    Google Scholar 

  26. N. Cavassilas, C. Gelly, F. Michelini, and M. Bescond: Reflective barrier optimization in ultrathin single-junction GaAs solar cell. IEEE J. Photovolt. 5, 1621 (2015).

    Google Scholar 

  27. U. Aeberhard: Simulation of ultrathin solar cells beyond the limits of the semiclassical bulk picture. IEEE J. Photovolt. 6, 654 (2016).

    Google Scholar 

  28. U. Aeberhard: Theoretical investigation of direct and phonon-assisted tunneling currents in InAlGaAs/InGaAs bulk and quantum-well interband tunnel junctions for multijunction solar cells. Phys. Rev. B 87, 081302 (2013).

    Google Scholar 

  29. U. Aeberhard: Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green’s function formalism. J. Comput. Electron. 10, 394 (2011).

    Google Scholar 

  30. L.P. Kadanoff and G. Baym: Quantum Statistical Mechanics (Benjamin, Reading, MA, 1962).

    Google Scholar 

  31. L. Keldysh: Diagram technique for nonequilibrium processes. J. Exp. Theor. Phys. 20, 1018 (1965).

    Google Scholar 

  32. U. Aeberhard: Quantum-kinetic theory of photocurrent generation via direct and phonon-mediated optical transitions. Phys. Rev. B 84, 035454 (2011).

    Google Scholar 

  33. U. Aeberhard: Quantum-kinetic theory of defect-mediated recombination in nanostructure-based photovoltaic devices. MRS Proceedings 1493, 91 (2013).

    Google Scholar 

  34. U. Aeberhard: Nanostructure solar cells. In Series in Optics and Optoelectronics, Vol. 441, J. Piprek, ed. (CRC Press, Boca Raton, Florida, 2017), pp. 441–474.

    Google Scholar 

  35. Z. Wang, T. White, and K. Catchpole: Plasmonic near-field enhancement for planar ultra-thin photovoltaics. IEEE Photonics J. 5, 8400608 (2013).

    Google Scholar 

  36. J.M. Llorens, J. Buencuerpo, and P.A. Postigo: Absorption features of the zero frequency mode in an ultra-thin slab. Appl. Phys. Lett. 105, 231115 (2014).

    Google Scholar 

  37. I. Massiot, C. Colin, N. Péré-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J-L. Pelouard, and S. Collin: Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells. Appl. Phys. Lett. 101 (16), 163901 (2012).

    Google Scholar 

  38. I. Massiot, C. Colin, C. Sauvan, P. Lalanne, P. Roca i Cabarrocas, J-L. Pelouard, and S. Collin: Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires. Opt. Express 21, A372 (2013).

    CAS  Google Scholar 

  39. I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaitre, J-F. Guillemoles, and S. Collin: Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers. ACS Photonics 1, 878 (2014).

    CAS  Google Scholar 

  40. X. Wang, M. Khan, J. Gray, M. Alam, and M. Lundstrom: Design of GaAs solar cells operating close to the Shockley–Queisser limit. IEEE J. Photovolt. 3, 737 (2013).

    Google Scholar 

  41. W. Yang, J. Becker, S. Liu, Y-S. Kuo, J-J. Li, B. Landini, K. Campman, and Y-H. Zhang: Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer. J. Appl. Phys. 115, 203105 (2014).

    Google Scholar 

  42. N. Vandamme, C. Hung-Ling, A. Gaucher, B. Behaghel, A. Lemaitre, A. Cattoni, C. Dupuis, N. Bardou, J-F. Guillemoles, and S. Collin: Ultrathin GaAs solar cells with a silver back mirror. IEEE J. Photovolt. 5, 565 (2015).

    Google Scholar 

  43. L.C. Hirst, M.K. Yakes, J.H. Warner, M.F. Bennett, K.J. Schmieder, R.J. Walters, and P.P. Jenkins: Intrinsic radiation tolerance of ultra-thin GaAs solar cells. Appl. Phys. Lett. 109, 033908 (2016).

    Google Scholar 

  44. U. Aeberhard: Photon Green’s functions for a consistent theory of absorption and emission in nanostructure-based solar cell devices. Opt. Quantum Electron. 46, 791 (2014).

    CAS  Google Scholar 

  45. B. Pieters, J. Krc, and M. Zeman: Advanced numerical simulation tool for solar cells—ASA5. In Conference Record of the 4th World Conference on Photovoltaic Energy Conversion (IEEE, Honolulu, Hawaii, 2006), pp. 1514–1516.

    Google Scholar 

  46. U. Aeberhard and U. Rau: Microscopic perspective on photovoltaic reciprocity in ultrathin solar cells. Phys. Rev. Lett. 118, 247702 (2017).

    Google Scholar 

  47. U. Aeberhard: Impact of built-in fields and contact configuration on the characteristics of ultra-thin GaAs solar cells. Appl. Phys. Lett. 109, 033906 (2016).

    Google Scholar 

  48. U. Aeberhard: Simulation of ultrathin solar cells beyond the limits of the semiclassical bulk picture. IEEE J. Photovoltaics 6, 654 (2016).

    Google Scholar 

  49. N.J. Ekins-Daukes, J.M. Barnes, K.W.J. Barnham, J.P. Connolly, M. Mazzer, J.C. Clark, R. Grey, G. Hill, M.A. Pate, and J.S. Roberts: Strained and strain-balanced quantum well devices for high-efficiency tandem solar cells. Sol. Energy Mater. Sol. Cells 68, 71 (2001).

    CAS  Google Scholar 

  50. N.J. Ekins-Daukes, K.W.J. Barnham, J.P. Connolly, J.S. Roberts, J.C. Clark, G. Hill, and M. Mazzer: Strain-balanced GaAsP/InGaAs quantum well solar cells. Appl. Phys. Lett. 75, 4195 (1999).

    CAS  Google Scholar 

  51. U. Aeberhard: Spectral properties of photogenerated carriers in quantum well solar cells. Sol. Energy Mater. Sol. Cells 94, 1897 (2010).

    CAS  Google Scholar 

  52. U. Aeberhard: Microscopic theory and numerical simulation of quantum well solar cells. Proc. SPIE 7597, 759702 (2010).

    Google Scholar 

  53. Y.P. Wang, K. Watanabe, Y. Wen, M. Sugiyama, and Y. Nakano: Strain-balanced InGaAs/GaAsP superlattice solar cell with enhanced short-circuit current and a minimal drop in open-circuit voltage. Appl. Phys. Express 5, 1 (2012).

    CAS  Google Scholar 

  54. U. Aeberhard: Simulation of nanostructure-based and ultra-thin film solar cell devices beyond the classical picture. J. Photonics Energy 4, 042099 (2014).

    Google Scholar 

  55. U. Aeberhard: Quantum-kinetic theory of steady-state photocurrent generation in thin films: Coherent versus incoherent coupling. Phys. Rev. B 89, 115303 (2014).

    Google Scholar 

  56. J. Nelson, M. Paxman, K.W.J. Barnham, J. Roberts, and C. Button: Steady state carrier escape rates from single quantum wells. IEEE J. Quantum Electron. 29, 1460 (1993).

    CAS  Google Scholar 

  57. A. Berbezier and U. Aeberhard: Impact of Nanostructure configuration on the photovoltaic performance of quantum-dot arrays. Phys. Rev. Applied 4, 044008 (2015).

    Google Scholar 

  58. A. Nozik: Quantum dot solar cells. Phys. E 14, 115 (2002).

    CAS  Google Scholar 

  59. P.V. Kamat: Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737 (2008).

    CAS  Google Scholar 

  60. A.J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson, and J.C. Johnson: Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110, 6873 (2010).

    CAS  Google Scholar 

  61. C-W. Jiang and M.A. Green: Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J. Appl. Phys. 99, 114902 (2006).

    Google Scholar 

  62. G. Conibeer, M. Green, E-C. Cho, D. König, Y-h. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield: Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films 516, 6748 (2008).

    CAS  Google Scholar 

  63. K. Ding, U. Aeberhard, O. Astakhov, F. Köhler, W. Beyer, F. Finger, R. Carius, and U. Rau: Silicon quantum dot formation in SiC/SiOx hetero-superlattices. Energy Procedia 10, 249 (2011).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

This work has benefited from fruitful discussions within COST action MP1406 — MultiscaleSolar.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Urs Aeberhard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aeberhard, U. Quantum-kinetic perspective on photovoltaic device operation in nanostructure-based solar cells. Journal of Materials Research 33, 373–386 (2018). https://doi.org/10.1557/jmr.2017.468

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.468

Navigation