Abstract
The implementation of a wide range of high-efficiency solar cell concepts is based on nanostructures with configuration-tunable optoelectronic properties. On the other hand, effective nano-optical light-trapping concepts enable the use of ultra-thin absorber architectures. In both cases, the local density of electronic and optical states deviates strongly from that of a homogeneous bulk material. At the same time, nonlocal and coherent phenomena like tunneling or ballistic transport become increasingly relevant. As a consequence, the semiclassical, diffusive bulk picture may no longer be appropriate to describe the physics of such devices. In this review, we provide a quantum-kinetic perspective on photovoltaic device operation that reaches beyond the limits of the standard simulation models for bulk solar cells. Deviations from bulk physics are assessed in ultra-thin film and nanostructure-based solar cell architectures by comparing predictions of semiclassical models with those of a more fundamental description based on nonequilibrium quantum statistical mechanics.
Similar content being viewed by others
References
K. Barnham and G. Duggan: A new approach to high-efficiency multi-band-gap solar cells. J. Appl. Phys. 67, 3490 (1990).
M.A. Green: Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Prog. Photovoltaics 9, 123 (2001).
M.A. Green: Potential for low dimensional structures in photovoltaics. Mater. Sci. Eng., B 74, 118 (2000).
A. Marti, L. Cuadra, and A. Luque: Partial filling of a quantum dot intermediate band for solar cells. IEEE Trans. Electron Devices 48, 2394 (2001).
G. Conibeer, D. König, M. Green, and J. Guillemoles: Slowing of carrier cooling in hot carrier solar cells. Thin Solid Films 516, 6948 (2008).
R.J. Ellingson, M.C. Beard, J.C. Johnson, P. Yu, O.I. Micic, A.J. Nozik, A. Shabaev, and A.L. Efros: Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett. 5, 865 (2005).
H.A. Atwater and A. Polman: Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010).
S. Mokkapati and K.R. Catchpole: Nanophotonic light trapping in solar cells. J. Appl. Phys. 112, 101101 (2012).
J.G.J. Adams, W. Elder, G. Hill, J.S. Roberts, K.W.J. Barnham, and N.J. Ekins-Daukes: Higher limiting efficiencies for nanostructured solar cells. Proc. SPIE 7597, 759705 (2010).
U. Aeberhard: Simulation of nanostructure-based high-efficiency solar cells: Challenges, existing approaches, and future directions. IEEE J. Sel. Top. Quantum Electron. 19, 4000411 (2013).
G. Araújo, A. Martí, F. Ragay, and J. Wolter: Efficiency of multiple quantum well solar cells. In Proceedings 12th European Photovoltaic Solar Energy Conference, R. Hill, W. Palz, and P. Helm, eds. (James & James, Amsterdam, the Netherlands, 1994); p. 1481.
P. Würfel: The chemical potential of radiation. J. Phys. C: Solid State Phys. 15, 3967 (1982).
U. Rau: Reciprocity relation between photovoltaic quantum efficiency and electroluminescent emission of solar cells. Phys. Rev. B 76, 085303 (2007).
L.E. Henrickson: Nonequilibrium photocurrent modeling in resonant tunneling photodetectors. J. Appl. Phys. 91, 6273 (2002).
M.A. Naser, M.J. Deen, and D.A. Thompson: Spectral function and responsivity of resonant tunneling and superlattice quantum dot infrared photodetectors using green’s function. J. Appl. Phys. 102, 083108 (2007).
M.F. Pereira and K. Henneberger: Microscopic theory for the influence of Coulomb correlations in the light-emission properties of semiconductor quantum wells. Phys. Rev. B 58, 2064 (1998).
S-C. Lee and A. Wacker: Nonequilibrium Green’s function theory for transport and gain properties of quantum cascade structures. Phys. Rev. B 66, 245314 (2002).
T. Kubis, C. Yeh, P. Vogl, A. Benz, G. Fasching, and C. Deutsch: Theory of nonequilibrium quantum transport and energy dissipation in terahertz quantum cascade lasers. Phys. Rev. B 79, 195323 (2009).
S. Steiger, R.G. Veprek, and B. Witzigmann: Electroluminescence from a quantum-well LED using NEGF. In Proceedings of the 13th International Workshop on Computational Electronics (IWCE) (2009).
D.A. Stewart and F. Leonard: Energy conversion efficiency in nanotube optoelectronics. Nano Lett. 5, 219 (IEEE, Beijing, China, 2005).
U. Aeberhard and R.H. Morf: Microscopic nonequilibrium theory of quantum well solar cells. Phys. Rev. B 77, 125343 (2008).
U. Aeberhard: Theory and simulation of photogeneration and transport in Si–SiOx superlattice absorbers. Nanoscale Res. Lett. 6, 242 (2011).
A. Buin, A. Verma, and S. Saini: Optoelectronic response calculations in the framework of k·p coupled to non-equilibrium Green’s functions for one-dimensional systems in the ballistic limit. J. Appl. Phys. 114, 033111 (2013).
U. Aeberhard: Effective microscopic theory of quantum dot superlattice solar cells. Opt. Quantum Electron. 44, 133 (2012).
A. Berbezier and U. Aeberhard: Impact of nanostructure configuration on the photovoltaic performance of quantum-dot arrays. Phys. Rev. Appl. 4, 044008 (2015).
N. Cavassilas, C. Gelly, F. Michelini, and M. Bescond: Reflective barrier optimization in ultrathin single-junction GaAs solar cell. IEEE J. Photovolt. 5, 1621 (2015).
U. Aeberhard: Simulation of ultrathin solar cells beyond the limits of the semiclassical bulk picture. IEEE J. Photovolt. 6, 654 (2016).
U. Aeberhard: Theoretical investigation of direct and phonon-assisted tunneling currents in InAlGaAs/InGaAs bulk and quantum-well interband tunnel junctions for multijunction solar cells. Phys. Rev. B 87, 081302 (2013).
U. Aeberhard: Theory and simulation of quantum photovoltaic devices based on the non-equilibrium Green’s function formalism. J. Comput. Electron. 10, 394 (2011).
L.P. Kadanoff and G. Baym: Quantum Statistical Mechanics (Benjamin, Reading, MA, 1962).
L. Keldysh: Diagram technique for nonequilibrium processes. J. Exp. Theor. Phys. 20, 1018 (1965).
U. Aeberhard: Quantum-kinetic theory of photocurrent generation via direct and phonon-mediated optical transitions. Phys. Rev. B 84, 035454 (2011).
U. Aeberhard: Quantum-kinetic theory of defect-mediated recombination in nanostructure-based photovoltaic devices. MRS Proceedings 1493, 91 (2013).
U. Aeberhard: Nanostructure solar cells. In Series in Optics and Optoelectronics, Vol. 441, J. Piprek, ed. (CRC Press, Boca Raton, Florida, 2017), pp. 441–474.
Z. Wang, T. White, and K. Catchpole: Plasmonic near-field enhancement for planar ultra-thin photovoltaics. IEEE Photonics J. 5, 8400608 (2013).
J.M. Llorens, J. Buencuerpo, and P.A. Postigo: Absorption features of the zero frequency mode in an ultra-thin slab. Appl. Phys. Lett. 105, 231115 (2014).
I. Massiot, C. Colin, N. Péré-Laperne, P. Roca i Cabarrocas, C. Sauvan, P. Lalanne, J-L. Pelouard, and S. Collin: Nanopatterned front contact for broadband absorption in ultra-thin amorphous silicon solar cells. Appl. Phys. Lett. 101 (16), 163901 (2012).
I. Massiot, C. Colin, C. Sauvan, P. Lalanne, P. Roca i Cabarrocas, J-L. Pelouard, and S. Collin: Multi-resonant absorption in ultra-thin silicon solar cells with metallic nanowires. Opt. Express 21, A372 (2013).
I. Massiot, N. Vandamme, N. Bardou, C. Dupuis, A. Lemaitre, J-F. Guillemoles, and S. Collin: Metal nanogrid for broadband multiresonant light-harvesting in ultrathin GaAs layers. ACS Photonics 1, 878 (2014).
X. Wang, M. Khan, J. Gray, M. Alam, and M. Lundstrom: Design of GaAs solar cells operating close to the Shockley–Queisser limit. IEEE J. Photovolt. 3, 737 (2013).
W. Yang, J. Becker, S. Liu, Y-S. Kuo, J-J. Li, B. Landini, K. Campman, and Y-H. Zhang: Ultra-thin GaAs single-junction solar cells integrated with a reflective back scattering layer. J. Appl. Phys. 115, 203105 (2014).
N. Vandamme, C. Hung-Ling, A. Gaucher, B. Behaghel, A. Lemaitre, A. Cattoni, C. Dupuis, N. Bardou, J-F. Guillemoles, and S. Collin: Ultrathin GaAs solar cells with a silver back mirror. IEEE J. Photovolt. 5, 565 (2015).
L.C. Hirst, M.K. Yakes, J.H. Warner, M.F. Bennett, K.J. Schmieder, R.J. Walters, and P.P. Jenkins: Intrinsic radiation tolerance of ultra-thin GaAs solar cells. Appl. Phys. Lett. 109, 033908 (2016).
U. Aeberhard: Photon Green’s functions for a consistent theory of absorption and emission in nanostructure-based solar cell devices. Opt. Quantum Electron. 46, 791 (2014).
B. Pieters, J. Krc, and M. Zeman: Advanced numerical simulation tool for solar cells—ASA5. In Conference Record of the 4th World Conference on Photovoltaic Energy Conversion (IEEE, Honolulu, Hawaii, 2006), pp. 1514–1516.
U. Aeberhard and U. Rau: Microscopic perspective on photovoltaic reciprocity in ultrathin solar cells. Phys. Rev. Lett. 118, 247702 (2017).
U. Aeberhard: Impact of built-in fields and contact configuration on the characteristics of ultra-thin GaAs solar cells. Appl. Phys. Lett. 109, 033906 (2016).
U. Aeberhard: Simulation of ultrathin solar cells beyond the limits of the semiclassical bulk picture. IEEE J. Photovoltaics 6, 654 (2016).
N.J. Ekins-Daukes, J.M. Barnes, K.W.J. Barnham, J.P. Connolly, M. Mazzer, J.C. Clark, R. Grey, G. Hill, M.A. Pate, and J.S. Roberts: Strained and strain-balanced quantum well devices for high-efficiency tandem solar cells. Sol. Energy Mater. Sol. Cells 68, 71 (2001).
N.J. Ekins-Daukes, K.W.J. Barnham, J.P. Connolly, J.S. Roberts, J.C. Clark, G. Hill, and M. Mazzer: Strain-balanced GaAsP/InGaAs quantum well solar cells. Appl. Phys. Lett. 75, 4195 (1999).
U. Aeberhard: Spectral properties of photogenerated carriers in quantum well solar cells. Sol. Energy Mater. Sol. Cells 94, 1897 (2010).
U. Aeberhard: Microscopic theory and numerical simulation of quantum well solar cells. Proc. SPIE 7597, 759702 (2010).
Y.P. Wang, K. Watanabe, Y. Wen, M. Sugiyama, and Y. Nakano: Strain-balanced InGaAs/GaAsP superlattice solar cell with enhanced short-circuit current and a minimal drop in open-circuit voltage. Appl. Phys. Express 5, 1 (2012).
U. Aeberhard: Simulation of nanostructure-based and ultra-thin film solar cell devices beyond the classical picture. J. Photonics Energy 4, 042099 (2014).
U. Aeberhard: Quantum-kinetic theory of steady-state photocurrent generation in thin films: Coherent versus incoherent coupling. Phys. Rev. B 89, 115303 (2014).
J. Nelson, M. Paxman, K.W.J. Barnham, J. Roberts, and C. Button: Steady state carrier escape rates from single quantum wells. IEEE J. Quantum Electron. 29, 1460 (1993).
A. Berbezier and U. Aeberhard: Impact of Nanostructure configuration on the photovoltaic performance of quantum-dot arrays. Phys. Rev. Applied 4, 044008 (2015).
A. Nozik: Quantum dot solar cells. Phys. E 14, 115 (2002).
P.V. Kamat: Quantum dot solar cells. Semiconductor nanocrystals as light harvesters. J. Phys. Chem. C 112, 18737 (2008).
A.J. Nozik, M.C. Beard, J.M. Luther, M. Law, R.J. Ellingson, and J.C. Johnson: Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110, 6873 (2010).
C-W. Jiang and M.A. Green: Silicon quantum dot superlattices: Modeling of energy bands, densities of states, and mobilities for silicon tandem solar cell applications. J. Appl. Phys. 99, 114902 (2006).
G. Conibeer, M. Green, E-C. Cho, D. König, Y-h. Cho, T. Fangsuwannarak, G. Scardera, E. Pink, Y. Huang, T. Puzzer, S. Huang, D. Song, C. Flynn, S. Park, X. Hao, and D. Mansfield: Silicon quantum dot nanostructures for tandem photovoltaic cells. Thin Solid Films 516, 6748 (2008).
K. Ding, U. Aeberhard, O. Astakhov, F. Köhler, W. Beyer, F. Finger, R. Carius, and U. Rau: Silicon quantum dot formation in SiC/SiOx hetero-superlattices. Energy Procedia 10, 249 (2011).
ACKNOWLEDGMENT
This work has benefited from fruitful discussions within COST action MP1406 — MultiscaleSolar.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Aeberhard, U. Quantum-kinetic perspective on photovoltaic device operation in nanostructure-based solar cells. Journal of Materials Research 33, 373–386 (2018). https://doi.org/10.1557/jmr.2017.468
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2017.468