Skip to main content
Log in

Influence of interactions between β′ precipitates and long period stacking ordered structures on corrosion behaviors of Mg–10Gd–5Y–2Zn–0.5Zr (wt%) alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this paper, corrosion behaviors of Mg–10Gd–5Y–2Zn–0.5Zr (wt%) alloy (GWZ1052K) in different aging stages are investigated using immersion tests and electrochemical measurements in 3.5 wt% NaCl aqueous solution. The corrosion resistance is found to increase from the solution-anneal to peak-aged condition, which is attributed to microstructure evolutions of β′ precipitates and nearly unchanged long period stacking ordered (LPSO) structures. The broken network LPSO structures no more act as corrosion barriers, thus inversely worsening the galvanic corrosion. β′ precipitates uniformly surround the LPSO lamellas, those partly enhancing corrosion resistance. The potentiodynamic polarization curves also show the best corrosion resistance in the peak-aged stage, suggesting the similar tendency of corrosion behaviors. And the results of electrochemical impedance spectrum are consistent with the morphology of the corrosion surface. Further equivalent circuit is established to investigate the corrosion mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. L.L. Shreir: Corrosion. Metal/environment Reactions, Vol. I (Taylor and Francis, Oxford, England, 1976).

    Google Scholar 

  2. C.B. Wilson, K.G. Claus, M.R. Earlam, J.E. Hillis, C.B. Wilson, K.G. Claus, M.R. Earlam, and J.E. Hillis: Magnesium and Magnesium Alloys (Macmillan Education, London, U.K., 1978).

    Google Scholar 

  3. L.L. Rokhlin: Magnesium Alloys Containing Rare Earth Metals (Taylor and Francis, Oxford, England, 2003).

    Book  Google Scholar 

  4. W. Ding, D. Li, Q. Wang, and Q. Li: Microstructure and mechanical properties of hot-rolled Mg–Zn–Nd–Zr alloys. Mater. Sci. Eng., A 483, 228 (2008).

    Article  CAS  Google Scholar 

  5. H.R.J. Nodooshan, W. Liu, G. Wu, Y. Rao, C. Zhou, S. He, W. Ding, and R. Mahmudi: Effect of Gd content on microstructure and mechanical properties of Mg–Gd–Y–Zr alloys under peak-aged condition. Mater. Sci. Eng., A 615, 79 (2014).

    Article  CAS  Google Scholar 

  6. S. Pang, G. Wu, W. Liu, M. Sun, Y. Zhang, Z. Liu, and W. Ding: Effect of cooling rate on the microstructure and mechanical properties of sand-casting Mg–10Gd–3Y–0.5Zr magnesium alloy. Mater. Sci. Eng., A 562, 152 (2013).

    Article  CAS  Google Scholar 

  7. W. Wang, G. Wu, Q. Wang, Y. Huang, and W. Ding: Gd contents, mechanical and corrosion properties of Mg–10Gd–3Y–0.5Zr alloy purified by fluxes containing GdCl3 additions. Mater. Sci. Eng., A 507, 207 (2009).

    Article  CAS  Google Scholar 

  8. G. Wu, Y. Zhang, W. Liu, and W. Ding: Microstructure evolution of semi-solid Mg–10Gd–3Y–0.5Zr alloy during isothermal heat treatment. J. Magnesium Alloys 1, 39 (2013).

    Article  CAS  Google Scholar 

  9. W.X. Wu, L. Jin, J. Dong, Z.Y. Zhang, and W.J. Ding: Hot deformation behavior and microstructural evolution of Mg–Nd–Zn–Zr magnesium alloy. Mater. Sci. Forum 747–748, 320 (2013).

    Article  CAS  Google Scholar 

  10. X. Zheng, J. Dong, D. Yin, W. Liu, F. Wang, L. Jin, and W. Ding: Forgeability and die-forging forming of direct chill casting Mg–Nd–Zn–Zr magnesium alloy. Mater. Sci. Eng., A 527, 3690 (2010).

    Article  CAS  Google Scholar 

  11. T. Honma, T. Ohkubo, S. Kamado, and K. Hono: Effect of Zn additions on the age-hardening of Mg–2.0Gd–1.2Y–0.2Zr alloys. Acta Mater. 55, 4137 (2007).

    Article  CAS  Google Scholar 

  12. X.B. Liu, R.S. Chen, and E.H. Han: Effects of ageing treatment on microstructures and properties of Mg–Gd–Y–Zr alloys with and without Zn additions. J. Alloys Compd. 465, 232 (2008).

    Article  CAS  Google Scholar 

  13. C. Xu, S.W. Xu, M.Y. Zheng, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, and X.Y. Lv: Microstructures and mechanical properties of high-strength Mg–Gd–Y–Zn–Zr alloy sheets processed by severe hot rolling. J. Alloys Compd. 524, 46 (2012).

    Article  CAS  Google Scholar 

  14. C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, and X.Y. Lv: Ultra high-strength Mg–Gd–Y–Zn–Zr alloy sheets processed by large-strain hot rolling and ageing. Mater. Sci. Eng., A 547, 93 (2012).

    Article  CAS  Google Scholar 

  15. C. Xu, M.Y. Zheng, S.W. Xu, K. Wu, E.D. Wang, S. Kamado, G.J. Wang, and X.Y. Lv: Microstructure and mechanical properties of rolled sheets of Mg–Gd–Y–Zn–Zr alloy: As-cast versus as-homogenized. J. Alloys Compd. 528, 40 (2012).

    Article  CAS  Google Scholar 

  16. K. Yamada, Y. Okubo, M. Shiono, H. Watanabe, S. Kamado, and Y. Kojima: Alloy development of high toughness Mg–Gd–Y–Zn–Zr alloys. Mater. Trans. 47, 1066 (2006).

    Article  CAS  Google Scholar 

  17. Q. Yang, B.L. Xiao, Q. Zhang, M.Y. Zheng, and Z.Y. Ma: Exceptional high-strain-rate superplasticity in Mg–Gd–Y–Zn–Zr alloy with long-period stacking ordered phase. Scr. Mater. 69, 801 (2013).

    Article  CAS  Google Scholar 

  18. Z. Yang, Y.C. Guo, J.P. Li, F. He, F. Xia, and M.X. Liang: Plastic deformation and dynamic recrystallization behaviors of Mg–5Gd–4Y–0.5Zn–0.5Zr alloy. Mater. Sci. Eng., A 485, 487 (2008).

    Article  CAS  Google Scholar 

  19. Z. Yang, J.P. Li, Y.C. Guo, T. Liu, F. Xia, Z.W. Zeng, and M.X. Liang: Precipitation process and effect on mechanical properties of Mg–9Gd–3Y–0.6Zn–0.5Zr alloy. Mater. Sci. Eng., A 454–455, 274 (2007).

    Article  CAS  Google Scholar 

  20. S. Zhang, G.Y. Yuan, C. Lu, and W.J. Ding: The relationship between (Mg, Zn) 3 RE phase and 14H-LPSO phase in Mg–Gd–Y–Zn–Zr alloys solidified at different cooling rates. J. Alloys Compd. 509, 3515 (2011).

    Article  CAS  Google Scholar 

  21. Y.X. Li, G.Z. Zhu, D. Qiu, D.D. Yin, Y.H. Rong, and M.X. Zhang: The intrinsic effect of long period stacking ordered phases on mechanical properties in Mg–RE based alloys. J. Alloys Compd. 660, 252 (2015).

    Article  CAS  Google Scholar 

  22. D.D. Yin, Q.D. Wang, Y. Gao, C.J. Chen, and J. Zheng: Effects of heat treatments on microstructure and mechanical properties of Mg–11Y–5Gd–2Zn–0.5Zr (wt%) alloy. J. Alloys Compd. 509, 1696 (2011).

    Article  CAS  Google Scholar 

  23. S. Zhang, W. Liu, X. Gu, C. Lu, G. Yuan, and W. Ding: Effect of solid solution and aging treatments on the microstructures evolution and mechanical properties of Mg–14Gd–3Y–1.8Zn–0.5Zr alloy. J. Alloys Compd. 557, 91 (2013).

    Article  CAS  Google Scholar 

  24. J. Zheng and B. Chen: Interactions between long-period stacking ordered phase and β′ precipitate in Mg–Gd–Y–Zn–Zr alloy: Atomic-scale insights from HAADF-STEM. Mater. Lett. 176, 223 (2016).

    Article  CAS  Google Scholar 

  25. J. Zheng, X. Xu, K. Zhang, and B. Chen: Novel structures observed in Mg–Gd–Y–Zr during isothermal ageing by atomic-scale HAADF-STEM. Mater. Lett. 152, 287 (2015).

    Article  CAS  Google Scholar 

  26. J.X. Zheng, Z. Li, L.D. Tan, X.S. Xu, R.C. Luo, and B. Chen: Precipitation in Mg–Gd–Y–Zr alloy: Atomic-scale insights into structures and transformations. Mater. Charact. 117, 76 (2016).

    Article  CAS  Google Scholar 

  27. A. Atrens: Understanding magnesium corrosion, recent progress at UQ, Vol. III (Curran Associates, Perth, Australia, 2011), pp. 1893.

    Google Scholar 

  28. A. Atrens and W. Dietzel: The negative difference effect and unipositive Mg+. Adv. Eng. Mater. 9, 292 (2007).

    Article  CAS  Google Scholar 

  29. A. Atrens, G.L. Song, F. Cao, Z. Shi, and P.K. Bowen: Advances in Mg corrosion and research suggestions. J. Alloys Compd. 1, 177 (2013).

    CAS  Google Scholar 

  30. A. Atrens, G.L. Song, M. Liu, Z. Shi, F. Cao, and M.S. Dargusch: Review of recent developments in the field of magnesium corrosion: Recent developments in Mg corrosion. Adv. Eng. Mater. 17, 400 (2015).

    Article  CAS  Google Scholar 

  31. F. Cao, G.L. Song, and A. Atrens: Corrosion and passivation of magnesium alloys. Corros. Sci. 111, 835 (2016).

    Article  CAS  Google Scholar 

  32. G. Song and A. Atrens: Understanding the Corrosion Mechanism: A Framework for Improving the Performance of Magnesium Alloys (John Wiley & Sons, Inc, New Jersey, USA, 2004); p. 507.

    Google Scholar 

  33. G.L. Song and A. Atrens: Corrosion mechanisms of magnesium alloys. Adv. Eng. Mater. 1, 11 (1999).

    Article  CAS  Google Scholar 

  34. S. Thomas, N.V. Medhekar, G.S. Frankel, and N. Birbilis: Corrosion mechanism and hydrogen evolution on Mg. Curr. Opin. Solid State Mater. Sci. 19, 85 (2015).

    Article  CAS  Google Scholar 

  35. G. Williams, N. Birbilis, and H.N. Mcmurray: The source of hydrogen evolved from a magnesium anode. Electrochem. Commun. 36, 1 (2013).

    Article  CAS  Google Scholar 

  36. G. Williams, A.L. Dafydd, H.N. Mcmurray, and N. Birbilis: The influence of arsenic alloying on the localised corrosion behaviour of magnesium. Electrochim. Acta 219, 401 (2016).

    Article  CAS  Google Scholar 

  37. B.L. Dong: High temperature oxidation of AZ31 + 0.3 wt% Ca and AZ31 + 0.3 wt% CaO magnesium alloys. Corros. Sci. 70, 243 (2013).

    Article  CAS  Google Scholar 

  38. D. Sachdeva: Insights into microstructure based corrosion mechanism of high pressure die cast AM50 alloy. Corros. Sci. 60, 18 (2012).

    Article  CAS  Google Scholar 

  39. J. Chang, X. Guo, S. He, P. Fu, L. Peng, and W. Ding: Investigation of the corrosion for Mg–x Gd–3Y–0.4Zr ( x = 6, 8, 10, 12 wt%) alloys in a peak-aged condition. Corros. Sci. 50, 166 (2008).

    Article  CAS  Google Scholar 

  40. S. Liang, D. Guan, and X. Tan: The relation between heat treatment and corrosion behavior of Mg–Gd–Y–Zr alloy. Mater. Des. 32, 1194 (2011).

    Article  CAS  Google Scholar 

  41. L.M. Peng, J.W. Chang, and X.W. Guo: Influence of heat treatment and microstructure on the corrosion of magnesium alloy Mg–10Gd–3Y–0.4Zr. J. Appl. Electrochem. 39, 913 (2009).

    Article  CAS  Google Scholar 

  42. M. Sun, G. Wu, W. Wang, and W. Ding: Effect of Zr on the microstructure, mechanical properties and corrosion resistance of Mg–10Gd–3Y magnesium alloy. Mater. Sci. Eng., A 523, 145 (2009).

    Article  CAS  Google Scholar 

  43. T. Zhang, X. Liu, Y. Shao, G. Meng, and F. Wang: Electrochemical noise analysis on the pit corrosion susceptibility of Mg–10Gd–2Y–0.5Zr, AZ91D alloy and pure magnesium using stochastic model. Corros. Sci. 50, 3500 (2008).

    Article  CAS  Google Scholar 

  44. J. Zhang, J. Xu, W. Cheng, C. Chen, and J. Kang: Corrosion behavior of Mg–Zn–Y alloy with long-period stacking ordered structures. J. Mater. Sci. Technol. 28, 1157 (2012).

    Article  CAS  Google Scholar 

  45. X. Zhang, Z. Ba, Q. Wang, Y. Wu, Z. Wang, and Q. Wang: Uniform corrosion behavior of GZ51K alloy with long period stacking ordered structure for biomedical application. Corros. Sci. 88, 1 (2014).

    Article  CAS  Google Scholar 

  46. X. Zhang, Z. Ba, Z. Wang, and Y. Xue: Microstructures and corrosion behavior of biodegradable Mg–6Gd–x Zn–0.4Zr alloys with and without long period stacking ordered structure. Corros. Sci. 105, 68 (2016).

    Article  CAS  Google Scholar 

  47. X. Zhang, Y. Wu, Y. Xue, Z. Wang, and L. Yang: Biocorrosion behavior and cytotoxicity of a Mg–Gd–Zn–Zr alloy with long period stacking ordered structure. Mater. Lett. 86, 42 (2012).

    Article  CAS  Google Scholar 

  48. J.N. Hryn: An Hydrogen Evolution Method for the Estimation of the Corrosion Rate of Magnesium Alloys (John Wiley & Sons, Inc, New Jersey, USA, 1993).

    Google Scholar 

  49. F. Cao, Z. Shi, J. Hofstetter, P.J. Uggowitzer, G. Song, M. Liu, and A. Atrens: Corrosion of ultra-high-purity Mg in 3.5% NaCl solution saturated with Mg(OH)2. Corros. Sci. 75, 78 (2013).

    Article  CAS  Google Scholar 

  50. F. Cao, Z. Shi, G.L. Song, M. Liu, and A. Atrens: Corrosion behaviour in salt spray and in 3.5% NaCl solution saturated with Mg(OH)2 of as-cast and solution heat-treated binary Mg–X alloys: X = Mn, Sn, Ca, Zn, Al, Zr, Si, Sr. Corros. Sci. 76, 60 (2013).

    Article  CAS  Google Scholar 

  51. Z. Shi and A. Atrens: An innovative specimen configuration for the study of Mg corrosion. Corros. Sci. 53, 226 (2011).

    Article  CAS  Google Scholar 

  52. G.V. Baril, C. Blanc, M. Keddam, and N. PéBèRe: Local electrochemical impedance spectroscopy applied to the corrosion behavior of an AZ91 magnesium alloy. J. Electrochem. Soc. 150, B488 (2003).

    Article  CAS  Google Scholar 

  53. N. Pebere, C. Riera, and F. Dabosi: Investigation of magnesium corrosion in aerated sodium sulfate solution by electrochemical impedance spectroscopy. Electrochim. Acta. 35, 555 (1990).

    Article  CAS  Google Scholar 

  54. A.L. Rudd, C.B. Breslin, and F. Mansfeld: The corrosion protection afforded by rare earth conversion coatings applied to magnesium. Corros. Sci. 42, 275 (2000).

    Article  CAS  Google Scholar 

  55. L.B. Tong, Q.X. Zhang, Z.H. Jiang, J.B. Zhang, J. Meng, L.R. Cheng, and H.J. Zhang: Microstructures, mechanical properties and corrosion resistances of extruded Mg–Zn–Ca–x Ce/La alloys. J. Mech. Behav. Biomed. Mater. 62, 57 (2016).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This research is supported by open fund of the State Key Laboratory of Refractories and Metallurgy (Grant No. G201702). Thanks to Frontier Research Center for Materials Structure, Shanghai Jiao Tong University, for its supports of JEM-ARM200F Atomic Scale High Angle Annular Dark Field-Scanning Transmission Electron Microscopy (HAADF-STEM) and FEI Versa 3D Dual Beam Field Emission Scanning Electron Microscope (FE-SEM).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zou, Y., Chen, X. & Chen, B. Influence of interactions between β′ precipitates and long period stacking ordered structures on corrosion behaviors of Mg–10Gd–5Y–2Zn–0.5Zr (wt%) alloy. Journal of Materials Research 33, 745–757 (2018). https://doi.org/10.1557/jmr.2017.448

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.448

Navigation