Skip to main content
Log in

Intercalation makes the difference with TiS2: Boosting electrocatalytic water oxidation activity through Co intercalation

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Intercalated and unmodified TiS2 nanomaterials were synthesized and characterized by UV-Visible-NIR spectroscopy, Powder X-Ray Diffraction, and X-Ray Photoelectron and Ultraviolet Photoelectron Spectroscopy. Photoelectron spectroscopy measurements indicated that CoS and Cu2S appeared to be intercalated between sheets of partially or fully oxidized TiS2, which could be solution processed on conductive oxide substrates. The materials were then applied toward water oxidation and evaluated by cyclic voltammetry, chronoamperometry, and impedance measurements. While unmodified TiS2 was not observed to perform well as an electrocatalyst with overpotentials >3 V in 1 M NaOH electrolyte, CoS intercalation was found to lower the overpotential by ∼1.8–1.44 V at 10 mA/cm2. Conversely, Cu2S intercalation resulted in only a modest increase in performance (>2.3 V overpotential). Impedance measurements indicated that intercalation increased the series resistance in the as-prepared samples but decreased the series resistance in oxidized samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, and N.S. Lewis: Solar water splitting cells. Chem. Rev. 110, 6446 (2010).

    CAS  Google Scholar 

  2. R. Eisenberg and H.B. Gray: Preface on making oxygen. Inorg. Chem. 47, 1697 (2008).

    CAS  Google Scholar 

  3. B.M. Hunter, H.B. Gray, and A.M. Mu: Earth-Abundant Heterogeneous Water Oxidation Catalysts. Chem. Rev. 116, 14120 (2016).

    CAS  Google Scholar 

  4. V. Artero and M. Fontecave: Solar fuels generation and molecular systems: Is it homogeneous or heterogeneous catalysis? Chem. Soc. Rev. 42, 2338 (2013).

    CAS  Google Scholar 

  5. T. Rosser and E. Reisner: Understanding immobilized molecular catalysts for fuel-forming reactions through UV/vis spectroelectrochemistry. ACS Catal. 7, 3131 (2017).

    CAS  Google Scholar 

  6. Y. Umena, K. Kawakami, J-R. Shen, and N. Kamiya: Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55 (2011).

    CAS  Google Scholar 

  7. B. Kok, B. Forbush, and M. McGloin: Cooperation of charges in photosynthetic O2 evolution–I. A linear four step mechanism. Photochem. Photobiol. 11, 457 (1970).

    CAS  Google Scholar 

  8. A. Fujishima and K. Honda: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).

    CAS  Google Scholar 

  9. J.D. Blakemore, R.H. Crabtree, and G.W. Brudvig: Molecular catalysts for water oxidation. Chem. Rev. 115, 12974 (2015).

    CAS  Google Scholar 

  10. M. Yagi and M. Kaneko: Molecular catalysts for water oxidation. Chem. Rev. 101, 21 (2001).

    CAS  Google Scholar 

  11. J.P. Hoare: The Electrochemistry of Oxygen (John Wiley and Sons, Inc., New York, 1968).

    Google Scholar 

  12. K. Lian, S.J. Thorpe, and D.W. Kirk: The electrocatalytic activity of amorphous and crystalline Ni–Co alloys on the oxygen evolution reaction. Electrochim. Acta 37, 169 (1992).

    CAS  Google Scholar 

  13. J. Suntivich, K.J. May, H.A. Gasteiger, J.B. Goodenough, and Y. Shao-Horn: A perovskite oxide optimized for oxygen evolution catalysis from molecular orbital principles. Science 334, 1383 (2011).

    CAS  Google Scholar 

  14. J.O. Bockris and T. Otagawa: Mechanism of oxygen evolution on perovskites. J. Phys. Chem. 87, 2960 (1983).

    CAS  Google Scholar 

  15. M. Driess, P.W. Menezes, A. Indra, V. Gutkin, and M. Driess: Boosting electrochemical water oxidation through replacement of Oh Co sites in cobalt oxide spinel with manganese. Chem. Commun. 53, 8018 (2017).

    Google Scholar 

  16. C.C.L. McCrory, S. Jung, J.C. Peters, and T.F. Jaramillo: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977 (2013).

    CAS  Google Scholar 

  17. S. Trasatti: Electrocatalysis by oxides—Attempt at a unifying approach. J. Electroanal. Chem. Interfacial Electrochem. 111, 125 (1980).

    CAS  Google Scholar 

  18. Z.N. Zahran, E.A. Mohamed, T. Ohta, and Y. Naruta: Electrocatalytic water oxidation by a highly active and robust α-Mn2O3 thin film sintered on a fluorine-doped tin oxide electrode. ChemCatChem 8, 532 (2016).

    CAS  Google Scholar 

  19. J.D. Blakemore, H.B. Gray, J.R. Winkler, and A.M. Mu: Co3O4 nanoparticle water-oxidation catalysts made by pulsed-laser ablation in liquids. ACS Catal. 3, 2497, (2013).

    CAS  Google Scholar 

  20. H. Liang, F. Meng, M. Cabán-Acevedo, L. Li, A. Forticaux, L. Xiu, Z. Wang, and S. Jin: Hydrothermal continuous flow synthesis and exfoliation of NiCo layered double hydroxide nanosheets for enhanced oxygen evolution catalysis. Nano Lett. 15, 1421 (2015).

    CAS  Google Scholar 

  21. D. Li, H. Baydoun, N. Verani, and S.L. Brock: Efficient water oxidation using CoMnP nanoparticles. J. Am. Chem. Soc. 138, 4006 (2016).

    CAS  Google Scholar 

  22. A. Mendoza-Garcia, H. Zhu, Y. Yu, Q. Li, L. Zhou, D. Su, M.J. Kramer, and S. Sun: Controlled anisotropic growth of Co–Fe–P from Co–Fe–O nanoparticles. Angew. Chem., Int. Ed. 54, 9642 (2015).

    CAS  Google Scholar 

  23. D. Jeong, K. Jin, S.E. Jerng, H. Seo, D. Kim, S.H. Nahm, S.H. Kim, and K.T. Nam: Mn5O8 nanoparticles as efficient water oxidation catalysts at neutral pH. ACS Catal. 5, 4624 (2015).

    CAS  Google Scholar 

  24. L. Liao, Q. Zhang, Z. Su, Z. Zhao, Y. Wang, Y. Li, X. Lu, D. Wei, G. Feng, Q. Yu, X. Cai, J. Zhao, Z. Ren, H. Fang, F. Robles-Hernandez, S. Baldelli, and J. Bao: Efficient solar water-splitting using a nanocrystalline CoO photocatalyst. Nat. Nanotechnol. 9, 69 (2014).

    CAS  Google Scholar 

  25. M.S. Whittingham: Electrical energy storage and intercalation chemistry. Science 192, 1126 (1976).

    CAS  Google Scholar 

  26. M.S. Whittingham: Lithium batteries and cathode materials. Chem. Rev. 104, 4271 (2004).

    CAS  Google Scholar 

  27. L.E. Conroy and K.C. Park: Electrical properties of the group IV disulfides, titanium disulfide, zirconium disulfide, hafnium disulfide and tin disulfide. Inorg. Chem. 7, 459 (1968).

    CAS  Google Scholar 

  28. W. Choi, N. Choudhary, G.H. Han, J. Park, D. Akinwande, and Y.H. Lee: Recent development of two-dimensional transition metal dichalcogenides and their applications. Mater. Today 20, 116 (2017).

    CAS  Google Scholar 

  29. F. Bonaccorso, Z. Sun, T. Hasan, and A.C. Ferrari: Graphene photonics and optoelectronics. Nat. Photonics 4, 611 (2010).

    CAS  Google Scholar 

  30. Y. Jung, Y. Zhou, and J.J. Cha: Intercalation in two-dimensional transition metal chalcogenides. Inorg. Chem. Front. 3, 452 (2016).

    CAS  Google Scholar 

  31. M.H. Lindic, B. Pecquenard, P. Vinatier, A. Levasseur, H. Martinez, D. Gonbeau, P.E. Petit, and G. Ouvrard: Electrochemical mechanisms during lithium insertion into TiO0.6S2.8 thin film positive electrode in lithium microbatteries. J. Electrochem. Soc. 152, A141 (2005).

    CAS  Google Scholar 

  32. G. Scholz, P. Joensen, J.M. Reyes, and R.F. Frindt: Intercalation of Ag in TaS2 and TiS2. Physica B+C 105, 214 (1981).

    CAS  Google Scholar 

  33. G.A. Wiegers: Misfit layer compounds: Structures and physical properties. Prog. Solid State Chem. 24, 1 (1996).

    CAS  Google Scholar 

  34. B. Tian, W. Tang, K. Leng, Z. Chen, S.J.R. Tan, C. Peng, G-H. Ning, W. Fu, C. Su, G.W. Zheng, and K.P. Loh: Phase transformations in TiS2 during K intercalation. ACS Energy Lett. 2, 1835 (2017).

    CAS  Google Scholar 

  35. E. Guilmeau, A. Maignan, C. Wan, and K. Koumoto: On the effects of substitution, intercalation, non-stoichiometry and block layer concept in TiS2 based thermoelectrics. Phys. Chem. Chem. Phys. 17, 24541 (2015).

    CAS  Google Scholar 

  36. S. Prabakar, C.W. Bumby, and R.D. Tilley: Liquid-phase synthesis of flower-like and flake-like titanium disulfide nanostructures. Chem. Mater. 21, 1725 (2009).

    CAS  Google Scholar 

  37. R.J. Toh, Z. Sofer, and M. Pumera: Catalytic properties of group 4 transition metal dichalcogenides (MX2; M = Ti, Zr, Hf; X = S, Se, Te). J. Mater. Chem. A 4, 18322 (2016).

    CAS  Google Scholar 

  38. A.J. Huckaba, S. Gharibzadeh, M. Ralaiarisoa, C. Roldan-Carmona, N. Mohammadian, G. Grancini, Y. Lee, P. Amsalem, E.J. Plichta, N. Koch, A. Moshaii, and M.K. Nazeeruddin: Low cost TiS2 as hole transport material for perovskite solar cells. Small Methods, doi: 10.1002/smtd.201700250. (2017).

  39. K.H. Park, J. Choi, H.J. Kim, D-H. Oh, J.R. Ahn, and S.U. Son: Unstable single-layered colloidal TiS2 nanodisks. Small 4, 945 (2008).

    CAS  Google Scholar 

  40. A.R. Kirmani, G.H. Carey, M. Abdelsamie, B. Yan, D. Cha, L.R. Rollny, X. Cui, E.H. Sargent, and A. Amassian: Effect of solvent environment on colloidal-quantum-dot solar-cell manufacturability and performance. Adv. Mater. 26, 4717 (2014).

    CAS  Google Scholar 

  41. A.L. Let, D.E. Mainwaring, C.J. Rix, and P. Murugaraj: Thio sol–gel synthesis of titanium disulfide thin films and nanoparticles using titanium(IV) alkoxide precursors. J. Phys. Chem. Solids 68, 1428 (2007).

    CAS  Google Scholar 

  42. Q. Cui, M. Sakhdari, B. Chamlagain, H-J. Chuang, Y. Liu, M.M-C. Cheng, Z. Zhou, and P-Y. Chen: Ultrathin and atomically flat transition-metal oxide: Promising building blocks for metal–insulator electronics. ACS Appl. Mater. Interfaces 8, 34552 (2016).

    CAS  Google Scholar 

  43. S. Jeong, D. Yoo, M. Ahn, P. Miró, T. Heine, and J. Cheon: Tandem intercalation strategy for single-layer nanosheets as an effective alternative to conventional exfoliation processes. Nat. Commun. 6, 5763 (2015).

    CAS  Google Scholar 

  44. L. Chen, K. Rahme, J.D. Holmes, M.A. Morris, and N.K.H. Slater: Non-solvolytic synthesis of aqueous soluble TiO2 nanoparticles and real-time dynamic measurements of the nanoparticle formation. Nanoscale Res. Lett. 7, 297 (2012).

    Google Scholar 

  45. R.A.L. Morasse, T. Li, Z.J. Baum, and J.E. Goldberger: Rational synthesis of dimensionally reduced TiS2 phases. Chem. Mater. 26, 4776 (2014).

    CAS  Google Scholar 

  46. G.A. Muller, J.B. Cook, H-S. Kim, S.H. Tolbert, and B. Dunn: High performance pseudocapacitor based on 2D layered metal chalcogenide nanocrystals. Nano Lett. 15, 1911 (2015).

    CAS  Google Scholar 

  47. M. Mousavi-Kamazani, Z. Zarghami, and M. Salavati-Niasari: Facile and novel chemical synthesis, characterization, and formation mechanism of copper sulfide (Cu2S, Cu2S/CuS, CuS) nanostructures for increasing the efficiency of solar cells. J. Phys. Chem. C 120, 2096 (2016).

    CAS  Google Scholar 

  48. K. Ramasamy, M.A. Malik, J. Raftery, F. Tuna, and P. O’Brien: Selective deposition of cobalt sulfide nanostructured thin films from single-source precursors. Chem. Mater. 22, 4919 (2010).

    CAS  Google Scholar 

  49. A.L. Let, D. Mainwaing, C. Rix, and P. Murugaraj: Synthesis and optical properties of TiS2 nanoclusters. Rev. Roum. Chim. 52, 235 (2007).

    CAS  Google Scholar 

  50. J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben: Handbook of X-Ray Photoelectron Spectroscopy (Heyden and Son, Eden Prairie, Minnesota, 1995).

    Google Scholar 

  51. A.F. Carley, P.R. Chalker, J.C. Riviere, and M.W. Roberts: The identification and characterisation of mixed oxidation states at oxidised titanium surfaces by analysis of X-ray photoelectron spectra. J. Chem. Soc., Faraday Trans. 1 83, 351 (1987).

    CAS  Google Scholar 

  52. W. Xu, S. Zhu, Y. Liang, Z. Li, Z. Cui, X. Yang, and A. Inoue: Nanoporous CuS with excellent photocatalytic property. Sci. Rep. 5, srep18125 (2015).

    Google Scholar 

  53. J. Gopalakrishnan, T. Murugesan, M.S. Hegde, and C.N.R. Rao: Study of transition-metal monosulphides by photoelectron spectroscopy. J. Phys. C: Solid State Phys. 12, 5255 (1979).

    CAS  Google Scholar 

  54. C. Battistoni, L. Gastaldi, G. Mattogno, M.G. Simeone, and S. Viticoli: Structural and magnetic properties of layer compounds: CoGaInS4. Solid State Commun. 61, 43 (1987).

    CAS  Google Scholar 

  55. D. Gonbeau, C. Guimon, G. Pfister-Guillouzo, A. Levasseur, G. Meunier, and R. Dormoy: XPS study of thin films of titanium oxysulfides. Surf. Sci. Lett. 254, A476 (1991).

    Google Scholar 

  56. X. Zhao, J. Jiang, Z. Xue, C. Yan, and T. Mu: An ambient temperature, CO2-assisted solution processing of amorphous cobalt sulfide in a thiol/amine based quasi-ionic liquid for oxygen evolution catalysis. Chem. Commun. 68, 9418 (2017).

    Google Scholar 

  57. R.D.L. Smith, M.S. Prévot, R.D. Fagan, S. Trudel, C.P. Berlinguette, M.S. Pre, R.D. Fagan, and S. Trudel: Water oxidation catalysis: Electrocatalytic response to metal stoichiometry in amorphous metal oxide films containing iron, cobalt, and nickel. J. Am. Chem. Soc. 135, 11580 (2013).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge SNSF NRP 70 project; No. 407040 154056, European Commission H2020-ICT-2014-1, SOLEDLIGHT project, grant agreement No. 643791 and the Swiss State Secretariat for Education, Research, and Innovation (SERI), and CTI 15864.2 PFNM-NM, the HZB-HU Graduate School “hybrid4energy,” and Solaronix, Aubonne, Switzerland. A.H. acknowledges support from the special funding for energy research, managed by Prof. Andreas ZÜTTEL, Funds No. 563074.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aron J. Huckaba.

Supporting Information for Intercalation Makes the Difference with TiS2: Boosting Electrocatalytic Water Oxidation Activity Through Co Intercalation (approximately 6.75 MB)

43578_2018_33050528_MOESM1_ESM.docx

Intercalation Makes the Difference with TiS2: Boosting Electrocatalytic Water Oxidation Activity Through Co Intercalation

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huckaba, A.J., Ralaiarisoa, M., Cho, K.T. et al. Intercalation makes the difference with TiS2: Boosting electrocatalytic water oxidation activity through Co intercalation. Journal of Materials Research 33, 528–537 (2018). https://doi.org/10.1557/jmr.2017.431

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.431

Navigation