Skip to main content
Log in

Development of tensile-compressive asymmetry free magnesium based composite using TiO2 nanoparticles dispersion

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

In this present study, different volume percentages of titanium dioxide nanoparticles were added as dispersions in commercially pure magnesium using the blend-press-sinter powder metallurgy process followed by hot extrusion. The physically blended titanium dioxide nanoparticles dispersoid induced a significant grain refinement in the extruded magnesium matrix. Characterization of the mechanical properties revealed that the increasing volume percentage of titanium oxide nanoparticles dispersion was effective in enhancing the ductility of magnesium without disturbing the strength under tensile loading and enhancing the strength of magnesium without disturbing the ductility under compressive loading. The dominating deformation mechanism in pure magnesium was the dislocation slip, which was subdued by the tensile twinning deformation mechanism due to the increasing presence of titanium dioxide dispersion. The effect of shift in the dominating deformation mechanism was displayed by the elimination of tensile-compressive asymmetry in magnesium when dispersed with 1 vol% of titanium dioxide nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. P. Amaravathy, S. Sathyanarayanan, S. Sowndarya, and N. Rajendran: Bioactive HA/TiO2 coating on magnesium alloy for biomedical applications. Ceram. Int. 40, 6617 (2014).

    Article  CAS  Google Scholar 

  2. S. Nagarajan and N. Rajendran: Surface characterization and electrochemical behavior of porous titanium dioxide coated 316L stainless steel for orthopedic applications. Appl. Surf. Sci. 255, 3927 (2009).

    Article  CAS  Google Scholar 

  3. D.K. Suker and R.M. Albadran: Cytotoxic effects of titanium dioxide nanoparticles on rat embryo fibroblast ref-3 cell line in vitro. Eur. J. Exp. Biol. 3, 354 (2013).

    CAS  Google Scholar 

  4. J. Wang and Y.F. Lung: Injury induced by TiO2 nanoparticles depends on their structural features: Size, shape, crystal phases, and surface coating. Int. J. Mol. Sci. 15, 22258 (2014).

    Article  CAS  Google Scholar 

  5. M. Ravichandran and S. Dineshkumar: Synthesis of Al–TiO2 composites through liquid powder metallurgy route. SSRG Int. J. Mech. Eng. 1, 12 (2014).

    Google Scholar 

  6. G.K. Meenashisundaram, M.H. Nai, A. Almajid, and M. Gupta: Development of high performance Mg–TiO2 nanocomposites targeting for biomedical/structural applications. Mater. Des. 65, 104 (2015).

    Article  CAS  Google Scholar 

  7. S.F. Hassan, O.O. Nasirudeen, N. Al-Aqeeli, N. Saheb, F. Patel, and M.M.A. Baig: Processing, microstructure and mechanical properties of a TiO2 nanoparticles reinforced magnesium for biocompatible application. Metall. Res. Technol. 114, 214 (2017).

    Article  Google Scholar 

  8. Y. Tomohiro, T. Threrujirapapong, I. Hisashi, and K. Katsuyoshi: Microstructural and mechanical properties of Ti composite reinforced with TiO2 additive particles. Trans. JWRI 38, 37 (2009).

    Google Scholar 

  9. G. Ranganath, S.C. Sharma, M. Krishna, and M.S. Muruli: A study of mechanical properties and fractography of ZA-27/titanium–dioxide metal matrix composites. J. Mater. Eng. Perform. 11, 408 (2002).

    Article  CAS  Google Scholar 

  10. M.P. Staiger, A.M. Pietak, J. Huadmai, and G. Dias: Magnesium and its alloys as orthopedic biomaterials: A review. Biomaterials 27, 1728 (2006).

    Article  CAS  Google Scholar 

  11. F. Witte, N. Hort, C. Vog, S. Cohen, K.U. Kainer, R. Willumeit, and F. Feyerabend: Degradable biomaterials based on magnesium corrosion. Curr. Opin. Solid State Mater. Sci. 12, 63 (2008).

    Article  CAS  Google Scholar 

  12. S.F. Hassan, S. Zabiullah, N. Al-Aqeeli, and M. Gupta: Magnesium nanocomposite: Effect of melt dispersion of different oxides nano particles. J. Mater. Res. 31, 100 (2016).

    Article  Google Scholar 

  13. S.F. Hassan: Mg–ZrO2 nanocomposite: Relative effect of reinforcement incorporation technique. Arch. Metall. Mater. 61, 1175 (2016).

    Article  CAS  Google Scholar 

  14. S.F. Hassan: Effect of primary processing techniques on the microstructure and mechanical properties of nano-Y2O3 reinforced magnesium nanocomposites. Mater. Sci. Eng., A 528, 5484 (2011).

    Article  CAS  Google Scholar 

  15. J. Umeda, M. Kawakami, K. Kondoh, E. Ayman, and H. Imai: Microstructural and mechanical properties of titanium particulate reinforced magnesium composite materials. Mater. Chem. Phys. 123, 649 (2010).

    Article  CAS  Google Scholar 

  16. N. Eustathopoulos, M.G. Nicholas, and B. Drevet: Wettability at High Temperatures, Vol. 3, Pregamon Materials Series (Elsevier, U.K., 1999); p. 198.

    Book  Google Scholar 

  17. R.M. German: Powder Metallurgy Science, 2nd ed. (Metal Powder Industries Federation, Princeton, NJ, USA, 1994); p. 298.

    Google Scholar 

  18. D.J. Lloyd: Particle reinforced aluminium and magnesium metal matrix composites. Int. Mater. Rev. 39, 1 (1994).

    Article  CAS  Google Scholar 

  19. ASM Handbook: Properties and Selection: Non-Ferrous Alloys and Special-Purpose Materials, Vol. 2 (ASM International, Materials Park, OH, 1990); p. 1134.

    Google Scholar 

  20. W.F. Hosford: The Mechanics of Crystals and Textures Polycrystals (Oxford University Press, Oxford, 1993); pp. 52–102.

    Google Scholar 

  21. R.E. Reed-Hill and R. Abbaschian: Physical Metallurgy Principles, 3rd ed. (PWS Publishing Company, Boston, 1992); pp. 168–203.

    Google Scholar 

  22. L.E. Murr: Interfacial Phenomena in Metals and Alloys (Addison-Wesley, MA, USA, 1975); pp. 202–208.

    Google Scholar 

  23. D.L. Yin, J.T. Wang, J.Q. Liu, and X. Zhao: On tension–compression yield asymmetry in an extruded Mg–3Al–1Zn alloy. J. Alloys Compd. 478, 789 (2009).

    Article  CAS  Google Scholar 

  24. N. Stanford and M.R. Barnett: Effect of particles on the formation of deformation twins in a magnesium-based alloy. Mater. Sci. Eng., A 516, 226 (2009).

    Article  Google Scholar 

  25. J. Jain, W.J. Poole, C.W. Sinclaira, and M.A. Gharghouri: Reducing the tension–compression yield asymmetry in a Mg–8Al–0.5Zn alloy via precipitation. Scr. Mater. 62, 301 (2010).

    Article  CAS  Google Scholar 

  26. P.G. Partridge: Irregular twin growth and contraction in hexagonal close packed metals. Acta Metall. 13, 1329 (1965).

    Article  CAS  Google Scholar 

  27. S.F. Hassan, M. Paramsothy, B.S. Yilbas, and M. Gupta: Study of comparative effectiveness of thermally stable nano-particles on high temperature deformability of wrought AZ31 alloy. J. Mater. Res. 29, 1264 (2014).

    Article  CAS  Google Scholar 

  28. J. Shen, W. Yin, Q. Wei, Y. Li, J. Liu, and L. An: Effect of ceramic nanoparticle reinforcements on the quasistatic and dynamic mechanical properties of magnesium-based metal matrix composites. J. Mater. Res. 28, 1835 (2013).

    Article  CAS  Google Scholar 

  29. R.W. Cahn: Physical Metallurgy (North-Holland Publishing Company, Netherlands, 1970); pp. 1083–1128.

    Google Scholar 

Download references

ACKNOWLEDGMENT

The authors would like to acknowledge the support provided by the Deanship of Scientific Research (DSR) at King Fahd University of Petroleum and Minerals (KFUPM) for funding this work through project No. IN151019.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Syed Fida Hassan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hassan, S.F., Ogunlakin, N.O., Al-Aqeeli, N. et al. Development of tensile-compressive asymmetry free magnesium based composite using TiO2 nanoparticles dispersion. Journal of Materials Research 33, 130–137 (2018). https://doi.org/10.1557/jmr.2017.430

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.430

Navigation