Skip to main content
Log in

Creep behavior of a γ′-strengthened Co-base alloy with zero γ/γ′-lattice misfit at 800 °C, 196 MPa

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Deformation and structural behavior of an experimental γ′-strengthened Co-base alloy during creep at 800 °C and 196 MPa have been investigated. The characteristic features of this alloy are zero γ/γ′-lattice misfit and a fine γ/γ′-microstructure. In the initial condition, the γ′-precipitates in this alloy are small (size of about 100 nm), have polyhedral morphology, and are separated by the very narrow γ-channels (width of about 10 nm). The tests performed up to about 1% creep strain (about 500 h creep time) gave creep curves with a slow constant strain rate and without an apparent transient creep, typical for superalloys with nonzero misfit. In this initial stage of creep, entering of the narrow γ-channels by dislocations is blocked by a strong Orowan force. The micromechanism of creep was identified as an octahedral glide of 〈011〉 superdislocations simultaneously in two phases, γ and γ′. The γ/γ′-microstructure with zero misfit shows no rafting but rapidly coarsens isotropically. It is concluded that zero misfit is beneficial at the initial stages of the creep but is unfavourable for long-term creep because of the continuous microstructural coarsening.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida: Cobalt-base high-temperature alloys. Science 312 (5770), 90 (2006).

    Article  CAS  Google Scholar 

  2. T.M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, and A. Suzuki: New Co-based high-temperature alloys. JOM 62 (1), 58 (2010).

    Article  CAS  Google Scholar 

  3. A. Suzuki and T.M. Pollock: High-temperature strength and deformation of γ/γ′ two-phase Co–Al–W-base alloys. Acta Mater. 56 (6), 1288 (2008).

    Article  CAS  Google Scholar 

  4. A. Bauer, S. Neumeier, F. Pyczak, R.F. Singer, and M. Göken: Creep properties of different γ′-strengthened Co-base superalloys. Mater. Sci. Eng., A 550, 333 (2012).

    Article  CAS  Google Scholar 

  5. A. Bauer, S. Neumeier, F. Pyczak, and M. Göken: Microstructure and creep strength of different γ/γ′-strengthened Co-base superalloy variants. Scr. Mater. 63 (12), 1197 (2010).

    Article  CAS  Google Scholar 

  6. K. Shinagawa, T. Omori, K. Oikawa, R. Kainuma, and K. Ishida: Ductility enhancement by boron addition in Co–Al–W high-temperature alloys. Scr. Mater. 61 (6), 612 (2009).

    Article  CAS  Google Scholar 

  7. N. Petrushin, K. Hvatzkiy, V. Gerasimov, T. Link, A. Epishin, G. Nolze, and G. Gerstein: A single-crystal Co-base superalloy strengthened by γ′ precipitates: Structure and mechanical properties. Adv. Eng. Mater. 17 (6), 755 (2015).

    Article  CAS  Google Scholar 

  8. M.S. Titus, A. Suzuki, and T.M. Pollock: Creep and directional coarsening in single crystals of new γ–γ′ cobalt-base alloys. Scr. Mater. 66 (8), 503 (2012).

    Article  Google Scholar 

  9. I. Lopez-Galilea, C. Zenk, S. Neumeier, S. Huth, W. Theisen, and M. Göken: The thermal stability of intermetallic compounds in an as-cast SX Co-base superalloy. Adv. Eng. Mater. 17 (6), 741 (2015).

    Article  CAS  Google Scholar 

  10. A.I. Epishin, N.V. Petrushin, T. Link, G. Nolze, Y.V. Loshchinin, and G. Gerstein: Thermal stability of the structure of a heat-resistant cobalt alloy hardened with intermetallic γ′-precipitates. Russ. Metall. 2016 (4), 286 (2016).

    Article  Google Scholar 

  11. L. Klein, A. Bauer, S. Neumeier, M. Görken, and S. Virtanen: High temperature oxidation of γ/γ′-strengthened Co-base superalloys. Corros. Sci. 53, 2027 (2011).

    Article  CAS  Google Scholar 

  12. F. Pyczak, A. Bauer, M. Göken, S. Neumeier, U. Lorenz, M. Oehring, N. Schell, A. Schreyer, A. Stark, and F. Symanzik: Plastic deformation mechanisms in a crept L12 hardened Co-base superalloy. Mater. Sci. Eng., A 571, 13 (2013).

    Article  CAS  Google Scholar 

  13. Y.M. Eggeler, M.S. Titus, A. Suzuki, and T.M. Pollock: Creep deformation-induced antiphase boundaries in L12-containing single-crystal cobalt-base superalloys. Acta Mater. 77, 352 (2014).

    Article  CAS  Google Scholar 

  14. M.S. Titus, Y.M. Eggeler, A. Suzuki, and T.M. Pollock: Creep-induced planar defects in L12-containing Co- and CoNi-base single-crystal superalloys. Acta Mater. 82, 530 (2015).

    Article  CAS  Google Scholar 

  15. Y.M. Eggeler, J. Müller, M.S. Titus, A. Suzuki, T.M. Pollock, and E. Spiecker: Planar defect formation in the γ′ phase during high temperature creep in single crystal CoNi-base superalloys. Acta Mater. 113, 335 (2016).

    Article  CAS  Google Scholar 

  16. U. Brückner, A. Epishin, and T. Link: Local X-ray diffraction analysis of the structure of dendrites in single-crystal nickel-base superalloys. Acta Mater. 45 (2), 5223 (1997).

    Article  Google Scholar 

  17. H. Mughrabi: The importance of sign and magnitude of γ/γ′ lattice misfit in superalloys with special reference to the new γ′-hardened cobalt-base superalloys. Acta Mater. 81, 21 (2014).

    Article  CAS  Google Scholar 

  18. S. Gao, M. Fivel, A. Ma, and A. Hartmaier: Influence of misfit stresses on dislocation glide in single crystal superalloys: A three-dimensional discrete dislocation dynamics study. J. Mech. Phys. Solids 76, 276 (2015).

    Article  CAS  Google Scholar 

  19. U. Hemmersmeier and M. Feller-Kniepmeier: Element distribution in the macro- and microstructure of nickel base superalloy CMSX-4. Mater. Sci. Eng., A 248, 87 (1998).

    Article  Google Scholar 

  20. C. Schulze and M. Feller-Kniepmeier: Transmission electron microscopy of phase composition and lattice misfit in the Re-containing nickel-base superalloy CMSX-10. Mater. Sci. Eng., A 281, 204 (2000).

    Article  Google Scholar 

  21. G. Kurdjumov and G. Sachs: Über den Mechanismus der Stahlhärtung. Z. Phys. 64 (5), 325 (1930).

    Article  Google Scholar 

  22. G. Nolze: Characterization of the fcc/bcc orientation relationship by EBSD using pole figures and variants. Z. Metallkd. 95, 744 (2004).

    Article  CAS  Google Scholar 

  23. S. Socrate and D.M. Parks: Numerical determination of the elastic driving force for directional coarsening in Ni-superalloys. Acta Metall. Mater. 41 (7), 2185 (1993).

    Article  CAS  Google Scholar 

  24. F.R.N. Nabarro: Rafting in superalloys. Metall. Mater. Trans. A 27 (3), 513 (1996).

    Article  Google Scholar 

  25. U. Brückner, A. Epishin, T. Link, and K. Dressel: The influence of the dendritic structure on the γ/γ′-lattice misfit in the single-crystal nickel-base superalloy CMSX-4. Mater. Sci. Eng., A 247 (1–2), 23 (1998).

    Article  Google Scholar 

  26. Report on DFG Project: Characterisation of the quaternary system Co–Al–W–Ta for development of γ′-strengthened Co-base alloys, EP 136/2–1, NO 307/5-1, TU Berlin, BAM Berlin, VIAM Moscow (2016).

  27. T. Link, A. Epishin, and B. Fedelich: Inhomogeneity of misfit stresses in nickel-base superalloys: Effect on propagation of matrix dislocation loops. Philos. Mag. 89 (13), 1141 (2009).

    Article  CAS  Google Scholar 

  28. M. Feller-Kniepmeier and T. Link: Dislocation structures in γ–γ′ interfaces of the single-crystal superalloy SRR 99 after annealing and high temperature creep. Mater. Sci. Eng., A 113, 191 (1989).

    Article  Google Scholar 

  29. M. Probst-Hein, A. Dlouhy, and G. Eggeler: Interface dislocations in superalloy single crystals. Acta Mater. 47 (8), 2497 (1999).

    Article  CAS  Google Scholar 

  30. L.J. Carrol, Q. Feng, and T.M. Pollock: Interfacial dislocation networks and creep in directionally coarsened Ru-containing nickel-base single-crystal superalloys. Metall. Mater. Trans. A 39, 1290 (2008).

    Article  Google Scholar 

  31. J.X. Zhang, H. Harada, Y. Koizumi, and T. Kobayashi: Dislocation motion in the early stages of high-temperature low-stress creep in a single-crystal superalloy with a small lattice misfit. J. Mater. Sci. 45 (2), 523 (2010).

    Article  CAS  Google Scholar 

  32. B.H. Kear and H.G.F. Wilsdorf: Dislocation configurations in plastically deformed polycrystalline Cu3Au alloys. Trans. AIME 224, 382 (1962).

    CAS  Google Scholar 

  33. G. Scheumann-Frerker, H. Gabrisch, and M. Feller-Kniepmeier: Dislocation microstructures in a single-crystal nickel-base superalloy after tensile testing at 823 K in the [001] direction. Philos. Mag. 65 (6), 1353 (1992).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to the German Research Foundation (DFG), project EP 136/2-1, NO 307/5-1 and the Russian Foundation of Basic Research (RFBR), project 13-08-91330-ННИО_а for funding this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander I. Epishin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Midtlyng, J., Epishin, A.I., Petrushin, N.V. et al. Creep behavior of a γ′-strengthened Co-base alloy with zero γ/γ′-lattice misfit at 800 °C, 196 MPa. Journal of Materials Research 32, 4466–4474 (2017). https://doi.org/10.1557/jmr.2017.424

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.424

Navigation