Skip to main content
Log in

Investigation on the properties of hybrid CH3NH3SnxI3 (0.9 ≤ x ≤ 1.4) perovskite systems

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Methylammonium-tin-iodide (MASnxI3, 0.9 ≤ x ≤ 1.4) systems were prepared by self assembly process in aqueous solutions. The “as-prepared” MASnxI3 systems exhibit a crystalline tetragonal structure (space group I4cm) with polyhedral-shaped crystallites. The as-prepared samples were annealed at T = 150 °C, t = 8 h under nitrogen and synthetic air. Under nitrogen, the CH3NH3SnxI3 systems adopted a cubic crystalline structure (space group P4mm) with crystallites of 2–4 µm length, whereas under air, the formation of noncrystalline phases was observed. The optical absorption spectra displayed absorption edges at 1107.0 nm (x = 0.9), 1098.6 nm (x = 1.0), and 1073.2 nm (x = 1.1), respectively, whereas at higher Sn-content (x ≥ 1.2), a broad tail of the absorbance profile was observed. The photoluminescence (PL) emission spectra (RT, λexc = 500 nm) showed major PL-events over 1 µm range and the appearance of additional bands at increasing the Sn-content. The fabrication of layers with a semiconducting behavior was demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, and E.D. Dunlop: Solar cell efficiency tables (version 48). Prog. Photovoltaics 24, 905–913 (2016).

    Article  Google Scholar 

  2. A. Kojima, K. Teshima, Y. Shirai, and T. Miyasaka: Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  Google Scholar 

  3. A. Binek, M.L. Petrus, N. Huber, H. Bristow, Y. Hu, T. Bein, and P. Docampo: Recycling perovskite solar cells to avoid lead waste. ACS Appl. Mater. Interfaces 8, 12881–12886 (2016).

    Article  CAS  Google Scholar 

  4. T.M. Schmidt, T.T. Larsen-Olsen, J.E. Carle, D. Angmo, and F.C. Krebs: Upscaling of perovskite solar cells: Fully ambient roll processing of flexible perovskite solar cells with printed back electrodes. Adv. Energy Mater. 5, 1500569 (2015).

    Article  Google Scholar 

  5. L. Dimesso, M. Dimamay, M. Hamburger, and W. Jaegermann: Properties of CH3NH3PbX3 (X = I, Br, Cl) powders as precursors for organic/inorganic solar cells. Chem. Mater. 26, 6762–6770 (2014).

    Article  CAS  Google Scholar 

  6. L. Dimesso, Y.M. Kim, and W. Jaegermann: Investigation of formamidinium and guanidinium lead tri-iodide powders as precursors for solar cells. Mater. Sci. Eng., B 204, 27–33 (2016).

    Article  CAS  Google Scholar 

  7. P.P. Boix, S. Agarwala, T. Ming Koh, N. Mathews, and S.G. Mhaisalkar: Perovskite solar cells: Beyond methylammonium lead iodide. J. Phys. Chem. Lett. 6, 898–907 (2015).

    Article  CAS  Google Scholar 

  8. I.R. Benmessaoud, A-L. Mahul-Mellier, E. Horvath, B. Maco, M. Spina, H. Lashuel, and L. Forro: Health hazard of the methylammonium lead iodide based perovskites: Cytotoxicity studies. Toxicol. Res. 5, 407–419 (2016).

    Article  CAS  Google Scholar 

  9. H. Needleman: Lead poisoning. Annu. Rev. Med. 55, 209–222 (2004).

    Article  CAS  Google Scholar 

  10. C.D. Toscano and T.R. Guilarte: Lead neurotoxicity: From exposure to molecular effects. Brain Res. Rev. 49, 529–554 (2005).

    Article  CAS  Google Scholar 

  11. B. Pourrut, M. Shahid, C. Dumat, P. Winterton, and E. Pinelli: Lead uptake, toxicity, and detoxification in plants. Rev. Environ. Contam. Toxicol. 213, 113–136 (2011).

    CAS  Google Scholar 

  12. Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S.S. Pandey, T. Ma, and S. Hayase: CH3NH3SnxPb(1−x)I3 perovskite solar cells covering up to 1060 nm. J. Phys. Chem. Lett. 5, 1004–1011 (2014).

    Article  CAS  Google Scholar 

  13. B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D’Haen, L. D’Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. De Angelis, and H.G. Boyen: Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015).

    Article  Google Scholar 

  14. C. Liu, J. Fan, H. Li, C. Zhang, and Y. Mai: Highly efficient perovskite solar cells with substantial reduction of lead content. Sci. Rep. 6, 35705 (2016).

    Article  CAS  Google Scholar 

  15. L. Dimesso, C. Das, M. Stoehr, T. Mayer, and W. Jaegermann: Effect of the annealing atmosphere on the properties of cesium tin iodide (CsSnI3) systems. Mater. Chem. Phys. 197, 27–35 (2017).

    Article  CAS  Google Scholar 

  16. D. Scaife, P. Weller, and W. Fisher: Crystal preparation and properties of cesium tin(II) trihalides. J. Solid State Chem. 9, 308–314 (1974).

    Article  CAS  Google Scholar 

  17. L.S. Foster, H.G. Nahas, and E.E. Lineken: Hydriodic acid: Regeneration of oxidized solutions. In Inorganic Syntheses, Vol. 2, W.C. Fernelius, ed. (John Wiley & Sons, Inc., Hoboken, NJ, USA, 1946).

    Google Scholar 

  18. Y. Dang, Y. Zhou, X. Liu, D. Ju, S. Xia, H. Xia, and X. Tao: Formation of hybrid perovskite tin iodide single crystals by top-seeded solution growth. Angew. Chem., Int. Ed. 55, 3447–3450 (2016).

    Article  CAS  Google Scholar 

  19. G.M. Bartenev, I.P. Suzdalev, and A.D. Tsyganov: Mössbauer effect study of the structure of inorganic glasses. Phys. Status Solidi 37, 73–78 (1970).

    Article  CAS  Google Scholar 

  20. L. Dimesso, C. Fasel, K. Lakus-Wollny, T. Mayer, and W. Jaegermann: Thermal (in)-stability of lead-free CH3NH3SnxI3 systems (0.9 ≤ x ≤ 1.1) prepared by solution method for photovoltaics. Mater. Sci. Semicond. Process. 68, 152–158 (2017).

    Article  CAS  Google Scholar 

  21. D.B. Mitzi: Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M = Ge, Sn, Pb). Chem. Mater. 8, 791–800 (1996).

    Article  CAS  Google Scholar 

  22. B. Brunetti, C. Cavallo, A. Ciccioli, G. Gigli, and A. Latini: On the thermal and thermodynamic (in)stability of methylammonium lead halide perovskites. Sci. Rep. 6, 31896 (2016).

    Article  CAS  Google Scholar 

  23. C.C. Stoumpos, C.D. Malliakas, and M.G. Kanatzidis: Semiconducting tin and lead iodide perovskites with organic cations: Phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  CAS  Google Scholar 

  24. N.K. Noel, S.D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.A. Haghighirad, A. Sadhanala, G.E. Eperon, S.K. Pathak, M.B. Johnston, A. Petrozza, L.M. Herza, and H.J. Snaith: Lead-free organic–inorganic tin halide perovskites for photovoltaic applications. Energy Environ. Sci. 7, 3061–3068 (2014).

    Article  CAS  Google Scholar 

  25. M.G. Ju, G. Sun, Y. Zhaob, and W.Z. Liang: A computational view of the change in the geometric and electronic properties of perovskites caused by the partial substitution of Pb by Sn. Phys. Chem. Chem. Phys. 17, 17679–17687 (2015).

    Article  CAS  Google Scholar 

  26. H. Li and Y. Oshima: Elementary reaction mechanism of methylamine oxidation in supercritical water. Ind. Eng. Chem. Res. 44, 8756–8764 (2005).

    Article  CAS  Google Scholar 

  27. C. Kittel: Introduction to Solid State Physics, 6th ed., Vol. 185 (John Wiley, New York, USA, 1986).

    Google Scholar 

  28. F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, and M.G. Kanatzidis: Lead-free solid-state organic–inorganic halide perovskite solar cells. Nat. Photonics 8, 489–494 (2014).

    Article  CAS  Google Scholar 

  29. S.S. Novosad and R.O. Kovalyuk: Absorption, luminescence, and electronic properties of CdI2:Sn2+ crystals. Inorg. Mater. 33, 1183–1188 (1997).

    CAS  Google Scholar 

  30. R.A. Howie, W. Moser, and I.C. Trevena: The crystal structure of tin(II) iodide. Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28, 2965–2971 (1972).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Many thanks are owed to Mr. J-C. Jaud for XRD technical assistance, to Mrs. K. Lakus-Wollny for SEM technical assistance, and to Mrs. C. Fasel for DTA-TG technical assistance. The authors thank the Federal Ministry of Research and Development (BMBF) of Germany (Project “Perosol” No. 03SF0483B) for the financial support during this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucangelo Dimesso.

Supplementary Material

43578_2017_32224132_MOESM1_ESM.doc

Supporting Information: Investigation on the Properties of Hybrid CH3NH3SnxI3 (0.9 ≤ x ≤ 1.4) Perovskite Systems (approximately 6.77 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dimesso, L., Stöhr, M., Das, C. et al. Investigation on the properties of hybrid CH3NH3SnxI3 (0.9 ≤ x ≤ 1.4) perovskite systems. Journal of Materials Research 32, 4132–4141 (2017). https://doi.org/10.1557/jmr.2017.418

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.418

Navigation