Skip to main content
Log in

A nitrogen-doped electrocatalyst from metal-organic framework-carbon nanotube composite

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Replacing precious and nondurable platinum-based catalysts by economical and commercially available materials is a key issue addressed in contemporary fuel cell technology. Carbon-based nanomaterials display great potential to improve fuel tolerance and reduce the cost and stress on metal scalability. However, their relatively low catalytic activity limits the development and application of these catalysts. In this study, we have synthesized a nitrogen-doped carbon electrocatalyst from metal-organic frameworks and carbon nanotube composites, taking advantage of the existing N in the organic linker in the MOFs with more N added through ammonia treatment. The morphology and composition of synthesized catalysts were characterized by SEM, TEM, XPS, and Raman. The derived catalyst exhibited superior catalytic activity than that of commercial Pt-based catalysts. The N enriched carbon catalyst with high surface area, a graphitic carbon skeleton, and a hierarchical porous structure facilitated the mass and charge transfer during electrolysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. F. Jaouen, E. Proietti, M. Lefevre, R. Chenitz, J-P. Dodelet, G. Wu, H.T. Chung, C.M. Johnston, and P. Zelenay: Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 4, 114 (2011).

    Article  CAS  Google Scholar 

  2. Y. Li, W. Zhou, H. Wang, L. Xie, Y. Liang, F. Wei, J-C. Idrobo, S.J. Pennycook, and H. Dai: An oxygen reduction electrocatalyst based on carbon nanotube–graphene complexes. Nat. Nanotechnol. 7, 394 (2012).

    Article  CAS  Google Scholar 

  3. D.S. Su, J. Zhang, B. Frank, A. Thomas, X. Wang, J. Paraknowitsch, and R. Schlögl: Metal-free heterogeneous catalysis for sustainable chemistry. ChemSusChem 3 (2), 169 (2010).

    Article  CAS  Google Scholar 

  4. L. Qu, Y. Liu, J-B. Baek, and L. Dai: Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 4, 1321 (2010).

    Article  CAS  Google Scholar 

  5. S. Yang, X. Feng, X. Wang, and K. Müllen: Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew. Chem., Int. Ed. 50, 5339 (2011).

    Article  CAS  Google Scholar 

  6. Z-W. Liu, F. Peng, H-J. Wang, H. Yu, W-X. Zheng, and J. Yang: Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew. Chem., Int. Ed. 50, 3257 (2011).

    Article  Google Scholar 

  7. K. Gong, F. Du, Z. Xia, M. Durstock, and L. Dai: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760 (2009).

    Article  CAS  Google Scholar 

  8. S. Yang, L. Zhi, K. Tang, X. Feng, J. Maier, and K. Müllen: Efficient synthesis of heteroatom (N or S)-doped graphene based on ultrathin graphene oxide-porous silica sheets for oxygen reduction reactions. Adv. Funct. Mater. 22, 3634 (2012).

    Article  CAS  Google Scholar 

  9. R. Silva, D. Voiry, M. Chhowalla, and T. Asefa: Efficient metal-free electrocatalysts for oxygen reduction: Polyaniline-derived N- and O-doped mesoporous carbons. J. Am. Chem. Soc. 135, 7823 (2013).

    Article  CAS  Google Scholar 

  10. J. Tang and Y. Yamauchi: Carbon materials: MOF morphologies in control. Nat. Chem. 8, 638 (2016).

    Article  CAS  Google Scholar 

  11. B. Liu, H. Shioyama, T. Akita, and Q. Xu: Metal–organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 130, 5390 (2008).

    Article  CAS  Google Scholar 

  12. W. Xia, A. Mahmood, R. Zou, and Q. Xu: Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 8, 1837 (2015).

    Article  CAS  Google Scholar 

  13. H-x. Zhong, J. Wang, Y-w. Zhang, W-l. Xu, W. Xing, D. Xu, Y-f. Zhang, and X-b. Zhang: ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem., Int. Ed. 53, 14235 (2014).

    Article  CAS  Google Scholar 

  14. J. Wei, Y. Hu, Y. Liang, B. Kong, J. Zhang, J. Song, Q. Bao, G.P. Simon, S.P. Jiang, and H. Wang: Nitrogen-doped nanoporous carbon/graphene nano-sandwiches: Synthesis and application for efficient oxygen reduction. Adv. Funct. Mater. 25, 5768 (2015).

    Article  CAS  Google Scholar 

  15. S. Liu, M. Tong, G. Liu, X. Zhang, Z. Wang, G. Wang, W. Cai, H. Zhang, and H. Zhao: S,N-containing Co-MOF derived Co9S8@S,N-doped carbon materials as efficient oxygen electrocatalysts and supercapacitor electrode materials. Inorg. Chem. Front. 4, 491 (2017).

    Article  CAS  Google Scholar 

  16. W. Wang, X. Xu, W. Zhou, and Z. Shao: Recent progress in metal–organic frameworks for applications in electrocatalytic and photocatalytic water splitting. Adv. Sci. 4, 1600371 (2017).

    Article  Google Scholar 

  17. L. Ge, Y. Yang, L. Wang, W. Zhou, R. De Marco, Z. Chen, J. Zou, and Z. Zhu: High activity electrocatalysts from metal–organic framework-carbon nanotube templates for the oxygen reduction reaction. Carbon 82, 417 (2015).

    Article  CAS  Google Scholar 

  18. J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bradley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F. Rodriguez-Macias, Y-S. Shon, T.R. Lee, D.T. Colbert, and R.E. Smalley: Fullerene pipes. Science 280, 1253 (1998).

    Article  CAS  Google Scholar 

  19. H-L. Jiang, B. Liu, Y-Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong, and Q. Xu: From metal–organic framework to nanoporous carbon: Toward a very high surface area and hydrogen uptake. J. Am. Chem. Soc. 133, 11854 (2011).

    Article  CAS  Google Scholar 

  20. S. Hermes, F. Schröder, R. Chelmowski, C. Wöll, and R.A. Fischer: Selective nucleation and growth of metal–organic open framework thin films on patterned COOH/CF3-terminated self-assembled monolayers on Au(111). J. Am. Chem. Soc. 127, 13744 (2005).

    Article  CAS  Google Scholar 

  21. M. Shoaee, M.W. Anderson, and M.P. Attfield: Crystal growth of the nanoporous metal–organic framework HKUST-1 revealed by in situ atomic force microscopy. Angew. Chem., Int. Ed. 47, 8525 (2008).

    Article  CAS  Google Scholar 

  22. C. Scherb, A. Schödel, and T. Bein: Directing the structure of metal–organic frameworks by oriented surface growth on an organic monolayer. Angew. Chem., Int. Ed. 47, 5777 (2008).

    Article  CAS  Google Scholar 

  23. Y. Yang, L. Ge, V. Rudolph, and Z. Zhu: In situ synthesis of zeolitic imidazolate frameworks/carbon nanotube composites with enhanced CO2 adsorption. Dalton Trans. 43, 7028 (2014).

    Article  CAS  Google Scholar 

  24. L. Lai, J.R. Potts, D. Zhan, L. Wang, C.K. Poh, C. Tang, H. Gong, Z. Shen, J. Lin, and R.S. Ruoff: Exploration of the active center structure of nitrogen-doped graphene-based catalysts for oxygen reduction reaction. Energy Environ. Sci. 5, 7936 (2012).

    Article  CAS  Google Scholar 

  25. L. Wang, A. Ambrosi, and M. Pumera: “Metal-free” catalytic oxygen reduction reaction on heteroatom-doped graphene is caused by trace metal impurities. Angew. Chem., Int. Ed. 52, 13818 (2013).

    Article  CAS  Google Scholar 

  26. J. Liang, Y. Zheng, J. Chen, J. Liu, D. Hulicova-Jurcakova, M. Jaroniec, and S.Z. Qiao: Facile oxygen reduction on a three-dimensionally ordered macroporous graphitic C3N4/carbon composite electrocatalyst. Angew. Chem., Int. Ed. 51, 3892 (2012).

    Article  CAS  Google Scholar 

  27. S. Yang, X.L. Feng, X.C. Wang, and K. Mullen: Graphene-based carbon nitride nanosheets as efficient metal-free electrocatalysts for oxygen reduction reactions. Angew. Chem., Int. Ed. 123, 5451 (2011).

    Article  Google Scholar 

  28. Y. Liang, Y. Li, H. Wang, J. Zhou, J. Wang, T. Regier, and H. Dai: Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 10, 780 (2011).

    Article  CAS  Google Scholar 

  29. H.T. Chung, J.H. Won, and P. Zelenay: Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat. Commun. 4, 1922 (2013).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the Australia Research Council Future Fellowship (FT120100720). The authors acknowledge the facilities, and the scientific and technical assistance, of the Australian Microscopy & Microanalysis Research Facility at the Center for Microscopy and Microanalysis.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Ge or Hao Wang.

Supporting information

43578_2018_33050538_MOESM1_ESM.docx

Supporting information: A nitrogen-doped electrocatalyst from metal-organic framework-carbon nanotube composite (approximately 2.97 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, L., Lin, R., Zhu, Z. et al. A nitrogen-doped electrocatalyst from metal-organic framework-carbon nanotube composite. Journal of Materials Research 33, 538–545 (2018). https://doi.org/10.1557/jmr.2017.416

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.416

Navigation