Skip to main content
Log in

Elucidating the effect of intermetallic compounds on the behavior of Mg–Gd–Al–Zn magnesium alloys at elevated temperatures

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The behavior of extruded Mg–Gd–Al–Zn magnesium alloys at elevated temperatures was studied to elucidate the effect of intermetallic compounds on thermal stability, grain coarsening mode, and grain growth kinetics. The presence of the fine and widely distributed intermetallic (Mg,Al)3Gd phase in the extruded microstructure of the Mg–4.8Gd–1.2Al–1Zn alloy was found to be quite effective in inhibiting grain growth. This was not the case for the Mg–3Gd–3Al–1Zn alloy, where the extruded microstructure showed that the grain boundaries are not effectively pinned by the main Al2Gd intermetallic phase. The grain coarsening situation was found to be more severe for the Mg–6Al–1Zn alloy because no second phases were present to pin the grain boundaries at elevated temperatures. The simultaneous presence of Al and Gd was found to be helpful in increasing the solidus temperature, and in this way, it further contributes to increasing thermal stability of the magnesium alloys. The abnormal grain growth occurred by penetrating into grain boundaries of smaller grains and by the formation of discrete islands inside large abnormal grains, which provided evidence for the occurrence of the solid-state wetting mechanism in this magnesium alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. B.L. Mordike and T. Ebert: Magnesium properties—Applications—Potential. Mater. Sci. Eng., A 302, 37 (2001).

    Article  Google Scholar 

  2. S. Nayak, B. Bhushan, R. Jayaganthan, P. Gopinath, R.D. Agarwal, and D. Lahiri: Strengthening of Mg based alloy through grain refinement for orthopaedic application. J. Mech. Behav. Biomed. Mater. Res. 59, 57 (2016).

    Article  CAS  Google Scholar 

  3. Y. Ali, D. Qiu, B. Jiang, F. Pan, and M. Zhang: Current research progress in grain refinement of cast magnesium alloys: A review article. J. Alloys Compd. 61, 639 (2015).

    Article  Google Scholar 

  4. M.K. Kulekci: Magnesium and its alloys applications in automotive industry. Int. J. Adv. Manuf. Technol. 39, 851 (2008).

    Article  Google Scholar 

  5. M. Kawasaki and T.G. Langdon: Review: Achieving superplastic properties in ultrafine-grained materials at high temperatures. J. Mater. Sci. 51, 19 (2016).

    Article  CAS  Google Scholar 

  6. B. Pourbahari, H. Mirzadeh, and M. Emamy: Toward unraveling the effects of intermetallic compounds on the microstructure and mechanical properties of Mg–Gd–Al–Zn magnesium alloys in the as-cast, homogenized, and extruded conditions. Mater. Sci. Eng., A 680, 39 (2017).

    Article  CAS  Google Scholar 

  7. D.H. St John, M. Qian, M.A. Eason, P. Cao, and Z. Hildebrand: Grain refinement of magnesium alloys. Metall. Mater. Trans. A 36, 1669 (2005).

    Article  Google Scholar 

  8. D. Yu, D. Zhang, J. Sun, Y. Luo, H. Zhang, F. Pan, and J. Xu: Improving mechanical properties of ZM61 magnesium alloy by aging before extrusion. J. Alloys Compd. 690, 553 (2017).

    Article  CAS  Google Scholar 

  9. A. Kumar, G. Kumar Meenashisundaram, V. Manakari, G. Parande, and M. Gupta: Lanthanum effect on improving CTE, damping, hardness and tensile response of Mg–3Al alloy. J. Alloys Compd. 695, 3612 (2017).

    Article  CAS  Google Scholar 

  10. L. Zhang, W. Chen, W. Zhang, W. Wang, and E. Wang: Microstructure and mechanical properties of thin ZK61 magnesium alloy sheets by extrusion and multi-pass rolling with lowered temperature. J. Mater. Process. Technol. 237, 65 (2016).

    Article  CAS  Google Scholar 

  11. D. Vinotha, K. Raghukandan, U.T.S. Pillai, and B.C. Pai: Grain refining mechanisms in magnesium alloys—An overview. Trans. Indian Inst. Met. 62, 521 (2009).

    Article  CAS  Google Scholar 

  12. Q. Miao, L. Hu, X. Wang, and E. Wang: Grain growth kinetics of a fine-grained AZ31 magnesium alloy produced by hot rolling. J. Alloys Compd. 493, 87 (2010).

    Article  CAS  Google Scholar 

  13. X. Wang, L. Hu, K. Liu, and Y. Zhang: Grain growth kinetics of bulk AZ31 magnesium alloy by hot pressing. J. Alloys Compd. 527, 193 (2012).

    Article  CAS  Google Scholar 

  14. J.J. Bhattacharyya, S.R. Agnew, and G. Muralidharan: Texture enhancement during grain growth of magnesium alloy AZ31B. Acta Mater. 86, 80 (2015).

    Article  CAS  Google Scholar 

  15. J.P. Young, H. Askari, Y. Hovanski, M.J. Heiden, and D.P. Field: Thermal microstructural stability of AZ31 magnesium after severe plastic deformation. Mater. Charact. 101, 9 (2015).

    Article  CAS  Google Scholar 

  16. M. Roostaei, M. Shirdel, M.H. Parsa, R. Mahmudi, and H. Mirzadeh: Microstructural evolution and grain growth kinetics of GZ31 magnesium alloy. Mater. Charact. 118, 584 (2016).

    Article  CAS  Google Scholar 

  17. C.W. Su, L. Lu, and M.O. Lai: Recrystallization and grain growth of deformed magnesium alloy. Philos. Mag. 88, 181 (2008).

    Article  CAS  Google Scholar 

  18. R. Alizadeh, R. Mahmudi, A.H.W. Ngan, and T.G. Langdon: Microstructural stability and grain growth kinetics in an extruded fine-grained Mg–Gd–Y–Zr alloy. J. Mater. Sci. 50, 4940 (2015).

    Article  CAS  Google Scholar 

  19. C.J. Silva, A. Kula, R.K. Mishra, and M. Niewczas: Grain growth kinetics and annealed texture characteristics of Mg–Sc binary alloys. J. Alloys Compd. 687, 548 (2016).

    Article  CAS  Google Scholar 

  20. F.J. Humphreys and M. Hatherly: Recrystallization and Related Annealing Phenomena, 2nd ed. (Elsevier, Oxford, U.K., 2004).

    Google Scholar 

  21. B. Verlinden, J. Driver, I. Samajdar, and R.D. Doherty: Thermo-mechanical Processing of Metallic Materials, 1st ed. (Elsevier, Amsterdam, The Netherlands, 2007).

    Google Scholar 

  22. J. Rudnizki, B. Zeislmair, U. Prahl, and W. Bleck: Prediction of abnormal grain growth during high temperature treatment. Comput. Mater. Sci. 49, 209 (2010).

    Article  CAS  Google Scholar 

  23. S.H. Jung, D.Y. Yoon, and S.J.L. Kang: Mechanism of abnormal grain growth in ultrafine-grained nickel. Acta Mater. 61, 5693 (2013).

    Google Scholar 

  24. M. Shirdel, H. Mirzadeh, and M.H. Parsa: Abnormal grain growth in AISI 304L stainless steel. Mater. Charact. 97, 11 (2014).

    Article  CAS  Google Scholar 

  25. M. Naghizadeh and H. Mirzadeh: Elucidating the effect of alloying elements on the behavior of austenitic stainless steels at elevated temperatures. Metall. Mater. Trans. A 47, 5698 (2016).

    Article  CAS  Google Scholar 

  26. V.Y. Novikov: Diagram of grain growth modes. Mater. Lett. 185, 436 (2016).

    Article  CAS  Google Scholar 

  27. P.R. Rios: Abnormal grain growth development from uniform grain size distributions. Acta Mater. 45, 1785 (1997).

    Article  CAS  Google Scholar 

  28. J.S. Choi and D.Y. Yoon: The temperature dependence of abnormal grain growth and grain boundary faceting in 316L stainless steel. ISIJ Int. 41, 478 (2001).

    Article  CAS  Google Scholar 

  29. M. Shirdel, H. Mirzadeh, and M.H. Parsa: Microstructural evolution during normal/abnormal grain growth in austenitic stainless steel. Metall. Mater. Trans. A 45, 5185 (2014).

    Article  CAS  Google Scholar 

  30. K.J. Ko, P.R. Cha, D. Srolovitz, and N.M. Hwang: Abnormal grain growth induced by sub-boundary-enhanced solid-state wetting: Analysis by phase-field model simulations. Acta Mater. 57, 838 (2009).

    Article  CAS  Google Scholar 

  31. X. Wang, W. Du, K. Liu, Z. Wang, and Sh. Li: Microstructure, tensile properties and creep behaviors of as-cast Mg–2Al–1Zn–xGd (x = 1, 2, 3, and 4 wt%) alloys. J. Alloys Compd. 522, 78 (2012).

    Article  CAS  Google Scholar 

  32. F. Bu, Q. Yang, K. Guan, X. Qiu, D. Zhang, T. Zheng, X. Cui, Sh. Sun, Z. Tang, W. Sun, X. Liu, and J. Meng: Study on the mutual effect of La and Gd on microstructure and mechanical properties of Mg–Al–Zn extruded alloy. J. Alloys Compd. 688, 1241 (2016).

    Article  CAS  Google Scholar 

  33. B. Pourbahari, M. Emamy, and H. Mirzadeh: Synergistic effect of Al and Gd on enhancement of mechanical properties of magnesium alloys. Prog. Nat. Sci.: Mater. Int. 27, 228 (2017).

    Article  CAS  Google Scholar 

  34. ASTM E112-13: Standard Test Methods for Determining Average Grain Size (ASTM International, West Conshohocken, PA, 2013). Available at: www.astm.org (accessed September 2017).

    Google Scholar 

  35. A.H. Feng and Z.Y. Ma: Enhanced mechanical properties of Mg–Al–Zn cast alloy via friction stir processing. Scr. Mater. 56, 397 (2007).

    Article  CAS  Google Scholar 

  36. X.U. Yan, L.X. Hu, S.U.N. Yu, J.B. Jia, and J.F. Jiang: Microstructure and mechanical properties of AZ61 magnesium alloy prepared by repetitive upsetting-extrusion. Trans. Nonferrous Met. Soc. China 25, 381 (2015).

    Article  Google Scholar 

  37. N.M. Hwang: Simulation of the effect of anisotropic grain boundary mobility and energy on abnormal grain growth. J. Mater. Sci. 33, 5625 (1998).

    Article  CAS  Google Scholar 

  38. A.D. Rollett, D.J. Srolovitz, and M.P. Anderson: Simulation and theory of abnormal grain growth—Anisotropic grain boundary energies and mobilities. Acta Metall. 37, 1227 (1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hamed Mirzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pourbahari, B., Mirzadeh, H. & Emamy, M. Elucidating the effect of intermetallic compounds on the behavior of Mg–Gd–Al–Zn magnesium alloys at elevated temperatures. Journal of Materials Research 32, 4186–4195 (2017). https://doi.org/10.1557/jmr.2017.415

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.415

Navigation