Skip to main content

Advertisement

Log in

Effect of mold temperature on microstructure and mechanical properties of rheo-squeeze casting Mg–3Nd–0.2Zn–0.4Zr alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The effect of mold temperature on microstructure and mechanical properties of a rheo-squeeze casting (RSC) Mg–3Nd–0.2Zn–0.4Zr (NZ30K) alloy were investigated. The results indicated that the rise of mold temperature contributed to the increase of particle size and alloy density and the decrease of dislocation density. The rapid coarsening and then the normal growth of the particles during solution treatment were observed, and the long-rod-like Zn2Zr3 phase occurred. After age treatment, rod-like β′ precipitate was found in the conventional squeeze casting (CSC) alloy, while two types of precipitates including β′ phase and small plate-like β″ phase were observed in the RSC alloy. The amount of Zn2Zr3 phase was increased with rising mold temperature. Compared with the T6-treated CSC sample, the T6-treated RSC sample presented higher mechanical properties due to the larger precipitation strengthening contribution, and the yield strength, ultimate tensile strength, and elongation were up to 160 MPa, 296 MPa, and 7.7%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. C. Antion, P. Donnadieu, F. Perrard, A. Deschampa, C. Tassin, and A. Pisch: Hardening precipitation in a Mg–4Y–3RE alloy. Acta Mater. 51, 5335 (2003).

    Article  CAS  Google Scholar 

  2. Y.L. Li, G.H. Wu, A.T. Chen, H.R.J. Nodooshan, W.C. Liu, Y.X. Wang, and W.J. Ding: Effects of Gd and Zr additions on the microstructures and high-temperature mechanical behavior of Mg–Gd–Y–Zr magnesium alloys in the product form of a large structural casting. J. Mater. Res. 30, 3461 (2015).

    Article  CAS  Google Scholar 

  3. P.H. Fu, L.M. Peng, H.Y. Jiang, J.W. Chang, and C.Q. Zhai: Effects of heat treatments on the microstructures and mechanical properties of Mg–3Nd–0.2Zn–0.4Zr (wt%) alloy. Mater. Sci. Eng., A 486, 183 (2008).

    Article  Google Scholar 

  4. Y.S. Chen, G.H. Wu, W.C. Liu, L. Zhang, H.H. Zhang, and W.D. Cui: Effects of minor Y addition on microstructure and mechanical properties of Mg–Nd–Zn–Zr alloy. J. Mater. Res. 1 (2017).

  5. M. Bamberger, G. Atiya, S. Khawaled, and A. Katsman: Comparison study of microstructure and phase evolution in Mg–Nd-and Mg–Gd-based alloys. Metall. Mater. Trans. A 45, 3241 (2014).

    Article  CAS  Google Scholar 

  6. P.H. Fu, L.M. Peng, H.Y. Jiang, L. Ma, and C.Q. Zhai: Chemical composition optimization of gravity cast Mg–yNd–xZn–Zr alloy. Mater. Sci. Eng., A 496, 177 (2008).

    Article  Google Scholar 

  7. A. Sanaty-Zadeh, A.A. Luo, and D.S. Stone: Comprehensive study of phase transformation in age-hardening of Mg–3Nd–0.2Zn by means of scanning transmission electron microscopy. Acta Mater. 94, 294 (2015).

    Article  CAS  Google Scholar 

  8. H. Qin, Y.C. Zhao, Z.Q. An, M.Q. Cheng, Q. Wang, T. Cheng, Q.J. Wang, J.X. Wang, Y. Jiang, X.L. Zhang, and G.Y. Yuan: Enhanced antibacterial properties, biocompatibility, and corrosion resistance of degradable Mg–Nd–Zn–Zr alloy. Biomaterials 53, 211 (2015).

    Article  CAS  Google Scholar 

  9. Z.M. Li, P.H. Fu, L.M. Peng, Y.X. Wang, and H.Y. Jiang: Strengthening mechanisms in solution treated Mg–yNd–zZn–xZr alloy. J. Mater. Sci. 48, 6367 (2013).

    Article  CAS  Google Scholar 

  10. M.C. Flemings: Behavior of metal alloys in the semisolid state. Metall. Trans. B 22, 269 (1991).

    Article  Google Scholar 

  11. R. Canyook, J. Wannasin, S. Wisuthmethangkul, and M.C. Flemings: Characterization of the microstructure evolution of a semi-solid metal slurry during the early stages. Acta Mater. 60, 3501 (2012).

    Article  CAS  Google Scholar 

  12. M. Xia, Y. Huang, Z. Cassinath, and Z. Fan: Continuous twin screw rheo-extrusion of an AZ91D magnesium alloy. Metall. Mater. Trans. A 43, 4331 (2012).

    Article  CAS  Google Scholar 

  13. J. Wannasin, R. Canyook, S. Wisutmethangoon, and M.C. Flemings: Grain refinement behavior of an aluminum alloy by inoculation and dynamic nucleation. Acta Mater. 61, 3897 (2013).

    Article  CAS  Google Scholar 

  14. Y. Zhang, G.H. Wu, W.C. Liu, L. Zhang, S. Pang, and W.J. Ding: Microstructure and mechanical properties of rheo-squeeze casting AZ91-Ca magnesium alloy prepared by gas bubbling process. Mater. Des. 67, 1 (2015).

    Article  Google Scholar 

  15. J. Wan, H. Yan, and D. Xu: Rheological study of semi-solid TiAl3/ZL101 composites prepared by ultrasonic vibration. Int. J. Mater. Res. 106, 1244 (2015).

    Article  CAS  Google Scholar 

  16. S.L. Lu, S.S. Wu, L. Wan, and P. An: Microstructure and tensile properties of wrought Al alloy 5052 produced by rheo-squeeze casting. Metall. Mater. Trans. A 44, 2735 (2013).

    Article  Google Scholar 

  17. C.L. Wang, A.T. Chen, L. Zhang, G.H. Wu, and W.J. Ding: Preparation of an Mg–Gd–Zn alloy semisolid slurry by low frequency electro-magnetic stirring. Mater. Des. 84, 53 (2015).

    Article  CAS  Google Scholar 

  18. Y.S. Chen, L. Zhang, W.C. Liu, G.H. Wu, and W.J. Ding: Preparation of Mg–Nd–Zn–(Zr) alloys semisolid slurry by electromagnetic stirring. Mater. Des. 95, 398 (2016).

    Article  CAS  Google Scholar 

  19. X. Fang, S. Lü, L. Zhao, J. Wang, L.F. Liu, and S.S. Wu: Microstructure and mechanical properties of a novel Mg–RE–Zn–Y alloy fabricated by rheo-squeeze casting. Mater. Des. 94, 353 (2016).

    Article  CAS  Google Scholar 

  20. H.M. Guo, S.G. Zhang, X.J. Yang, X.B. Liu, and H.L. Jin: Microstructure evolution and mechanical properties of rheo-squeeze cast Mg–9Al–1Zn alloy by experiments and thermodynamic calculation. Metall. Mater. Trans. A 46, 2134 (2015).

    Article  CAS  Google Scholar 

  21. Y.L. Yang, L.M. Peng, P.H. Fu, B. Hu, W.J. Ding, and B.Z. Yu: Effects of process parameters on the macrostructure of a squeeze-cast Mg–2.5 mass% Nd alloy. Mater. Trans. 50, 2820 (2009).

    Article  CAS  Google Scholar 

  22. T.J. Chen, L.K. Huang, X.F. Huang, Y. Ma, and Y. Hao: Effects of mould temperature and grain refiner amount on microstructure and tensile properties of thixoforged AZ63 magnesium alloy. J. Alloys Compd. 556, 167 (2013).

    Article  CAS  Google Scholar 

  23. Y.S. Chen, T.J. Chen, S.Q. Zhang, and P.B. Li: Effects of processing parameters on microstructure and mechanical properties of powder-thixoforged 6061 aluminum alloy. Trans. Nonferrous Met. Soc. China 25, 699 (2015).

    Article  CAS  Google Scholar 

  24. P. Bindu and S. Thomas: Estimation of lattice strain in ZnO nanoparticles: X-ray peak profile analysis. J. Theor. Appl. Phys. 8, 123 (2014).

    Article  Google Scholar 

  25. C.P. Tang, W.H. Liu, Y.Q. Chen, X. Liu, and Y.L. Deng: Effects of thermal treatment on microstructure and mechanical properties of a Mg–Gd-based alloy plate. Mater. Sci. Eng., A 659, 63 (2016).

    Article  CAS  Google Scholar 

  26. D. Yan, C.C. Tasan, and D. Raabe: High resolution in situ mapping of microstrain and microstructure evolution reveals damage resistance criteria in dual phase steels. Acta Mater. 96, 399 (2015).

    Article  CAS  Google Scholar 

  27. J. Jiang, J. Yang, T. Zhang, J. Zou, Y. Wang, F.P.E. Dunne, and T.B. Britton: Microstructurally sensitive crack nucleation around inclusions in powder metallurgy nickel-based superalloys. Acta Mater. 117, 333 (2015).

    Article  Google Scholar 

  28. H.J. Huang, T.J. Chen, Y. Ma, and Y. Hao: Microstructural evolution during solution treatment of thixoformed AM60B Mg alloy. Trans. Nonferrous Met. Soc. China 21, 745 (2011).

    Article  CAS  Google Scholar 

  29. X.W. Zheng, A.A. Luo, J. Dong, A.K. Sachdev, and W.J. Ding: Plastic flow behavior of a high-strength magnesium alloy NZ30K. Mater. Sci. Eng., A 532, 616 (2012).

    Article  CAS  Google Scholar 

  30. F.L. Cheng, T.J. Chen, Y.S. Qi, S.Q. Zhang, and P. Yao: Effects of solution treatment in microstructure and mechanical properties of thixoformed Mg2Sip/AM60B composites. J. Alloys Compd. 636, 48 (2015).

    Article  CAS  Google Scholar 

  31. Y. Wang, G. Liu, and Z. Fan: Microstructural evolution of rheo-diecast AZ91D magnesium alloy during heat treatment. Acta Mater. 54, 689 (2006).

    Article  CAS  Google Scholar 

  32. H.Z. Li, F. Lv, X.P. Liang, Y.L. Qi, Z.X. Zhu, and K.L. Zhang: Effect of heat treatment on microstructures and mechanical properties of a cast Mg–Y–Nd–Zr alloy. Mater. Sci. Eng., A 667, 409 (2016).

    Article  CAS  Google Scholar 

  33. J.F. Nie: Precipitation and hardening in magnesium alloys. Metall. Mater. Trans. A 43, 3891 (2012).

    Article  CAS  Google Scholar 

  34. L. Ma, R.K. Mishra, M.P. Balogh, L.M. Peng, A.A. Luo, A.K. Sachdev, and W.J. Ding: Effect of Zn on the microstructure evolution of extruded Mg–3Nd (–Zn)–Zr (wt%) alloys. Mater. Sci. Eng., A 543, 12 (2012).

    Article  CAS  Google Scholar 

  35. I. Toda-Caraballo, E.I. Galindo-Nava, and P.E.J. Rivera-Díaz-del-Castillo: Understanding the factors influencing yield strength on Mg alloys. Acta Mater. 75, 287 (2014).

    Article  CAS  Google Scholar 

  36. R.L. Fleischer: Substitutional solution hardening. Acta Metall. Mater. 11, 203 (1963).

    Article  CAS  Google Scholar 

  37. R. Labusch: A statistical theory of solid solution hardening. Phys. Status Solidi B 41, 659 (1970).

    Article  Google Scholar 

  38. J.E. Bailey and P.B. Hirsch: The dislocation distribution, flow stress, and stored energy in cold-worked polycrystalline silver. Philos. Mag. 5, 485 (1960).

    Article  CAS  Google Scholar 

  39. C.H. Cáceres and P. Lukáč: Strain hardening behaviour and the Taylor factor of pure magnesium. Philos. Mag. 88, 977 (2008).

    Article  Google Scholar 

  40. M. Suzuki, T. Kimura, J. Koike, and K. Maruyama: Strengthening effect of Zn in heat resistant Mg–Y–Zn solid solution alloys. Scr. Mater. 48, 997 (2003).

    Article  CAS  Google Scholar 

  41. Y.L. Yang, L.M. Peng, P.H. Fu, B. Hu, and W.J. Ding: Study on microstructure of squeeze casting AZ91D alloy. Mater. Sci. Technol. 27, 189 (2011).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by National Key Research and Development Program of China (No. 2016YFB0701205), Science Innovation Foundation of Shanghai Academy of Spaceflight Technology (Nos. SAST2015047 and SAST2016048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohua Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Wu, G., Liu, W. et al. Effect of mold temperature on microstructure and mechanical properties of rheo-squeeze casting Mg–3Nd–0.2Zn–0.4Zr alloy. Journal of Materials Research 32, 4206–4218 (2017). https://doi.org/10.1557/jmr.2017.413

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.413

Navigation