Skip to main content

Advertisement

Log in

Direct solution-based reduction synthesis of Au, Pd, and Pt aerogels

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Gold, palladium, and platinum aerogels were prepared by a rapid, direct solution-based reduction synthesis with densities of 0.54, 0.065, and 0.055 g/cm3, respectively. Salt solutions were reduced at 1:1 (v/v) with dimethylamine borane and sodium borohydride to rapidly form gels within seconds to minutes above a threshold salt concentration and were then rinsed and freeze dried. Au, Pd, and Pt aerogels had no presence of oxide phases confirmed by X-ray diffractometry. Specific surface areas determined with gas physisorption were 3.06, 15.43, and 20.56 m2/g for Au, Pd, and Pt. Electrochemically determined specific capacitances using electrochemical impedance spectroscopy and cyclic voltammetry were 2.18, 4.13, and 4.20 F/g, and 2.67, 7.99, and 5.12 F/g for Au, Pd, and Pt, respectively. The rapid synthesis, high solvent accessible specific surface area, conductivity, and capacitance make these noble metal aerogels candidates for many of catalytic, energy, and sensor applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. D. Rolison: Catalytic nanoarchitectures-the importance of nothing and the unimportance of periodicity. Science 299, 1698 (2003).

    Article  CAS  Google Scholar 

  2. T. Wei, C. Chen, K. Chang, S. Lu, and C. Hu: Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route. Chem. Mater. 21, 3228 (2009).

    Article  CAS  Google Scholar 

  3. M. Anderson, C. Morris, R. Stroud, C. Merzbacher, and D. Rolison: Colloidal gold aerogels: Preparation, properties, and characterization. Langmuir 15, 674 (1999).

    Article  CAS  Google Scholar 

  4. N. Gaponik, A. Herrmann, and A. Eychmuller: Colloidal nanocrystal-based gels and aerogels: Material aspects and application perspectives. J. Phys. Chem. Lett. 3, 8 (2012).

    Article  CAS  Google Scholar 

  5. R. Olsson, M. Samir, G. Salazar-Alvarez, L. Belova, V. Strom, L. Berglund, O. Ikkala, J. Nogues, and U. Gedde: Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat. Nanotechnol. 5, 584 (2010).

    Article  CAS  Google Scholar 

  6. A. Hodge, J. Hayes, J. Cao, J. Biener, and A. Hamza: Characterization and mechanical behavior of nanoporous gold. Adv. Eng. Mater. 8, 853 (2006).

    Article  CAS  Google Scholar 

  7. A. Hodge, J. Biener, J. Hayes, P. Bythrow, C. Volkert, and A. Hamza: Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55, 1343 (2007).

    Article  CAS  Google Scholar 

  8. A. Ambrosi, C. Chua, A. Bonanni, and M. Pumera: Electrochemistry of graphene and related materials. Chem. Rev. 114, 7150 (2014).

    Article  CAS  Google Scholar 

  9. F. Maillard, S. Schreier, M. Hanzlik, E. Savinova, S. Weinkauf, and U. Stimming: Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys. Chem. Chem. Phys. 7, 385 (2005).

    Article  CAS  Google Scholar 

  10. V. Zielasek, B. Jurgens, C. Schulz, J. Biener, M. Biener, A. Hamza, and M. Baumer: Gold catalysts: Nanoporous gold foams. Angew. Chem., Int. Ed. 45, 8241 (2006).

    Article  CAS  Google Scholar 

  11. B. Viswanath, S. Patra, N. Munichandraiah, and N. Ravishankar: Nanoporous Pt with high surface area by reaction-limited aggregation of nanoparticles. Langmuir 25, 3115 (2009).

    Article  CAS  Google Scholar 

  12. S. Ingale, P. Sastry, P. Wagh, A. Tripathi, R. Rao, R. Tewari, P. Rao, R. Patel, A. Tyagi, and S. Gupta: Synthesis and micro structural investigations of titania-silica nano composite aerogels. Mater. Chem. Phys. 135, 497 (2012).

    Article  CAS  Google Scholar 

  13. S. Jung, H. Jung, W. Fang, M. Dresselhaus, and J. Kong: A facile methodology for the production of in situ inorganic nanowire hydrogels/aerogels. Nano Lett. 14, 1810 (2014).

    Article  CAS  Google Scholar 

  14. L. Song, Z. Wu, H. Liang, F. Zhou, Z. Yu, L. Xu, Z. Pan, and S. Yu: Macroscopic-scale synthesis of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates. Nano Energy 19, 117 (2016).

    Article  CAS  Google Scholar 

  15. S. Mahadk-Khanolkar, S. Donthula, A. Bang, C. Wisner, C. Sotiroupolous-Leventis, and N. Leventis: Polybenzoxazine aerogels. 2. Interpenetrating networks with iron oxide and the carbothermal synthesis of highly porous monolithic pure iron(0) aerogels as energetic materials. Chem. Mater. 26, 1318 (2014).

    Article  CAS  Google Scholar 

  16. Y. Tang, K. Yeo, Y. Chen, L. Yap, W. Xiong, and W. Cheng: Ultralow-density copper nanowire aerogel monoliths with tunable mechanical and electrical properties. J. Mater. Chem. A 1, 6723 (2013).

    Article  CAS  Google Scholar 

  17. Y. Tang, S. Gong, Y. Chen, L. Yap, and W. Cheng: Manufacturable conducting rubber ambers and stretchable conductors from copper nanowire aerogel monoliths. ACS Nano 8, 5707 (2014).

    Article  CAS  Google Scholar 

  18. W. Liu, A. Herrmann, N. Bigall, P. Rodriguez, D. Wen, M. Oezaslan, T. Schmidt, N. Gaponik, and A. Eychmuller: Noble metal aerogels-synthesis, characterization, and application as electrocatalysts. Acc. Chem. Res. 48, 154 (2015).

    Article  CAS  Google Scholar 

  19. P. Zhao, N. Li, and D. Astruc: State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 257, 638 (2013).

    Article  CAS  Google Scholar 

  20. D. Wen, A. Herrmann, L. Borchardt, F. Simon, W. Liu, S. Kaskel, and A. Eychmuller: Controlling the growth of palladium aerogels with high-performance toward bioelectrocatalytic oxidation of glucose. J. Am. Chem. Soc. 136, 2727 (2014).

    Article  CAS  Google Scholar 

  21. N. Jana, L. Gearheart, and C. Murphy: Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 13, 1389 (2001).

    Article  CAS  Google Scholar 

  22. D. Walsh, L. Arcelli, T. Ikoma, J. Tanaka, and S. Mann: Dextran templating for the synthesis of metallic and metal oxide sponges. Nat. Mater. 2, 386 (2003).

    Article  CAS  Google Scholar 

  23. Y. Song, D. Zhang, W. Goa, and X. Xia: Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template. Chem.–Eur. J. 11, 2177 (2005).

    Article  CAS  Google Scholar 

  24. N. Bigall, A. Herrmann, M. Vogel, M. Rose, P. Simon, W. Carrillo-Cabrera, D. Dorfs, S. Kaskel, N. Gaponik, and A. Eychmuller: Hydrogels and aerogels from noble metal nanoparticles. Angew. Chem., Int. Ed. 48, 9731 (2009).

    Article  CAS  Google Scholar 

  25. N. Bigall and A. Eychmuller: Synthesis of noble metal nanoparticles and their non-ordered superstructures. Philos. Trans. R. Soc., A 368, 1385 (2010).

    Article  CAS  Google Scholar 

  26. W. Liu, P. Rodriguez, L. Borchardt, A. Foelske, J. Yuan, A. Herrmann, D. Geiger, Z. Zheng, S. Kaskel, N. Gaponik, R. Kotz, T. Schmidt, and A. Eychmuller: Bimetallic aerogels: High-performance electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 52, 9849 (2013).

    Article  CAS  Google Scholar 

  27. D. Wen, W. Liu, D. Haubold, C. Zhu, M. Oschatz, M. Holzchuh, A. Wolf, F. Simon, S. Kaskel, and A. Eychmuller: Gold aerogels: Three-dimensional assembly of nanoparticles and their use as electrocatalytic interfaces. ACS Nano 10, 2559 (2016).

    Article  CAS  Google Scholar 

  28. Y. Ding, M. Chen, and J. Erlebacher: Metallic mesoporous nanocomposites for electrocatalysis. J. Am. Chem. Soc. 126, 6876 (2004).

    Article  CAS  Google Scholar 

  29. W. Liu, A. Herrmann, D. Geiger, L. Borchardt, F. Simon, S. Kaskel, N. Gaponik, and A. Eychmuller: High-performance electrocatalysis on palladium aerogels. Angew. Chem., Int. Ed. 51, 5743 (2012).

    Article  CAS  Google Scholar 

  30. A. Herrmann, P. Formanek, L. Borchardt, M. Klose, L. Giebeler, J. Eckert, S. Kaskel, N. Gaponik, and A. Eychmüller: Multimetallic aerogels by template-free self-assembly of Au, Ag, Pt, and Pd nanoparticles. Chem. Mater. 26, 1074 (2014).

    Article  CAS  Google Scholar 

  31. K. Ameen, T. Rajasekharan, and M. Rajasekharan: Grain size dependence of physico-optical properties of nanometallic silver in silica aerogel matrix. J. Non-Cryst. Solids 352, 737 (2006).

    Article  CAS  Google Scholar 

  32. G. Qin, J. Liu, T. Balaji, X. Xu, H. Matsunaga, Y. Hakuta, L. Zuo, and P. Raveendran: A facile and template-free method to prepare mesoporous gold sponge and its pore size control. J. Phys. Chem. C 112, 10352 (2008).

    Article  CAS  Google Scholar 

  33. K. Krishna, C. Sandeep, R. Philip, and M. Eswaramoorthy: Mixing does the magic: A rapid synthesis of high surface area noble metal nanosponges showing broadband nonlinear optical response. ACS Nano 5, 2681 (2010).

    Article  CAS  Google Scholar 

  34. S. Kistler: Coherent expanded aerogels and jellies. Nature 127, 741 (1931).

    Article  CAS  Google Scholar 

  35. A. Du, B. Zhou, Z. Zhang, and J. Shen: A special material or a new state of matter: A review and reconsideration of the aerogel. Materials 6, 941 (2013).

    Article  CAS  Google Scholar 

  36. B. Tappan, S. Steiner, and E. Luther: Nanoporous metal foams. Angew. Chem., Int. Ed. 49, 4544 (2010).

    Article  CAS  Google Scholar 

  37. B. Brunauer, P. Emmett, and P. Teller: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).

    Article  CAS  Google Scholar 

  38. E. Barrett, L. Joyner, and P. Halenda: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951).

    Article  CAS  Google Scholar 

  39. R. de Levie: On porous electrodes in electrolyte solutions-IV. Electrochim. Acta 9, 1231 (1964).

    Article  Google Scholar 

  40. H. Keiser, K. Beccu, and M. Gutjahr: Evaluation of the pore structure of porous electrodes from impedance measurements. Electrochim. Acta 21, 539 (1976).

    Article  CAS  Google Scholar 

  41. C. Schneider, W. Rasband, and K. Eliceiri: NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).

    Article  CAS  Google Scholar 

  42. K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, and T. Siemieniewska: International union of pure and applied chemistry, IUPAC. Pure Appl. Chem. 57, 603 (1985).

    Article  CAS  Google Scholar 

  43. S. Wang and W. Tseng: Aggregate structure and crystallite size of platinum nanoparticles synthesized by ethanol reduction. J. Nanopart. Res. 11, 947 (2009).

    Article  CAS  Google Scholar 

  44. M. Thommes, K. Kaneko, A. Neimark, J. Oliver, F. Rodriguez-Reinoso, J. Rouquerol, and K. Sing: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051 (2015).

    Article  CAS  Google Scholar 

  45. X. Liu, R. Zhang, L. Zhan, D. Long, W. Qiao, J. Yang, and L. Ling: Impedance of carbon aerogel/activated carbon composites as electrodes of electrochemical capacitors in aprotic electrolyte. New Carbon Mater. 22, 153 (2007).

    Article  CAS  Google Scholar 

  46. J. Gamby, P. Taberna, P. Simon, J. Fauvarque, and M. Chesneau: Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109 (2001).

    Article  CAS  Google Scholar 

  47. R. Farma, M. Deraman, Awitdrus, I.A. Talib, R. Omar, J.G. Manjunatha, M.M. Ishak, N.H. Basri, and B.N.M. Dolah: Physical and electrochemical properties of supercapacitor electrodes derived from carbon nanotube and biomass carbon. Int. J. Electrochem. Sci. 8, 257 (2013).

    CAS  Google Scholar 

  48. H. Song, Y. Jung, K. Lee, and L. Dao: Electrochemical impedance spectroscopy of porous electrodes: The effect of pore size distribution. Electrochim. Acta 44, 3513 (1999).

    Article  CAS  Google Scholar 

  49. J. Bisquert: Influence of the boundaries in the impedance of porous film electrodes. Phys. Chem. Chem. Phys. 2, 4185 (2000).

    Article  CAS  Google Scholar 

  50. J. Bisquert: Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B 106, 325 (2002).

    Article  CAS  Google Scholar 

  51. J. Bisquert, G. Garcia-Belmonte, P. Bueno, E. Longo, and L. Bulhoes: Impedance of constant phase element (CPE)-blocked diffusion in film electrodes. J. Electroanal. Chem. 452, 229 (1998).

    Article  CAS  Google Scholar 

  52. M. Lukaszewski, M. Sosko, and A. Czerwinski: Electrochemical methods of real surface area determination of noble metal electrodes—An overview. Int. J. Electrochem. Sci. 11, 4442 (2016).

    Article  CAS  Google Scholar 

  53. A. Kornyshev and M. Irbakh: Double-layer capacitance on a rough metal surface. Phys. Rev. E 53, 6192 (1996).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. Deryn Chu at the Army Research Laboratory-Sensors and Electron Devices Directorate, Dr. Christopher Haines at the Armament Research, Development and Engineering Center, U.S. Army RDECOM-ARDEC, and Dr. Stephen Bartolucci at the U.S. Army Benet Laboratories for their assistance. This work was supported by a Faculty Development Research Fund grant from the United States Military Academy, West Point.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fred J. Burpo.

Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burpo, F.J., Nagelli, E.A., Morris, L.A. et al. Direct solution-based reduction synthesis of Au, Pd, and Pt aerogels. Journal of Materials Research 32, 4153–4165 (2017). https://doi.org/10.1557/jmr.2017.412

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.412

Navigation