Abstract
Gold, palladium, and platinum aerogels were prepared by a rapid, direct solution-based reduction synthesis with densities of 0.54, 0.065, and 0.055 g/cm3, respectively. Salt solutions were reduced at 1:1 (v/v) with dimethylamine borane and sodium borohydride to rapidly form gels within seconds to minutes above a threshold salt concentration and were then rinsed and freeze dried. Au, Pd, and Pt aerogels had no presence of oxide phases confirmed by X-ray diffractometry. Specific surface areas determined with gas physisorption were 3.06, 15.43, and 20.56 m2/g for Au, Pd, and Pt. Electrochemically determined specific capacitances using electrochemical impedance spectroscopy and cyclic voltammetry were 2.18, 4.13, and 4.20 F/g, and 2.67, 7.99, and 5.12 F/g for Au, Pd, and Pt, respectively. The rapid synthesis, high solvent accessible specific surface area, conductivity, and capacitance make these noble metal aerogels candidates for many of catalytic, energy, and sensor applications.
Similar content being viewed by others
References
D. Rolison: Catalytic nanoarchitectures-the importance of nothing and the unimportance of periodicity. Science 299, 1698 (2003).
T. Wei, C. Chen, K. Chang, S. Lu, and C. Hu: Cobalt oxide aerogels of ideal supercapacitive properties prepared with an epoxide synthetic route. Chem. Mater. 21, 3228 (2009).
M. Anderson, C. Morris, R. Stroud, C. Merzbacher, and D. Rolison: Colloidal gold aerogels: Preparation, properties, and characterization. Langmuir 15, 674 (1999).
N. Gaponik, A. Herrmann, and A. Eychmuller: Colloidal nanocrystal-based gels and aerogels: Material aspects and application perspectives. J. Phys. Chem. Lett. 3, 8 (2012).
R. Olsson, M. Samir, G. Salazar-Alvarez, L. Belova, V. Strom, L. Berglund, O. Ikkala, J. Nogues, and U. Gedde: Making flexible magnetic aerogels and stiff magnetic nanopaper using cellulose nanofibrils as templates. Nat. Nanotechnol. 5, 584 (2010).
A. Hodge, J. Hayes, J. Cao, J. Biener, and A. Hamza: Characterization and mechanical behavior of nanoporous gold. Adv. Eng. Mater. 8, 853 (2006).
A. Hodge, J. Biener, J. Hayes, P. Bythrow, C. Volkert, and A. Hamza: Scaling equation for yield strength of nanoporous open-cell foams. Acta Mater. 55, 1343 (2007).
A. Ambrosi, C. Chua, A. Bonanni, and M. Pumera: Electrochemistry of graphene and related materials. Chem. Rev. 114, 7150 (2014).
F. Maillard, S. Schreier, M. Hanzlik, E. Savinova, S. Weinkauf, and U. Stimming: Influence of particle agglomeration on the catalytic activity of carbon-supported Pt nanoparticles in CO monolayer oxidation. Phys. Chem. Chem. Phys. 7, 385 (2005).
V. Zielasek, B. Jurgens, C. Schulz, J. Biener, M. Biener, A. Hamza, and M. Baumer: Gold catalysts: Nanoporous gold foams. Angew. Chem., Int. Ed. 45, 8241 (2006).
B. Viswanath, S. Patra, N. Munichandraiah, and N. Ravishankar: Nanoporous Pt with high surface area by reaction-limited aggregation of nanoparticles. Langmuir 25, 3115 (2009).
S. Ingale, P. Sastry, P. Wagh, A. Tripathi, R. Rao, R. Tewari, P. Rao, R. Patel, A. Tyagi, and S. Gupta: Synthesis and micro structural investigations of titania-silica nano composite aerogels. Mater. Chem. Phys. 135, 497 (2012).
S. Jung, H. Jung, W. Fang, M. Dresselhaus, and J. Kong: A facile methodology for the production of in situ inorganic nanowire hydrogels/aerogels. Nano Lett. 14, 1810 (2014).
L. Song, Z. Wu, H. Liang, F. Zhou, Z. Yu, L. Xu, Z. Pan, and S. Yu: Macroscopic-scale synthesis of nitrogen-doped carbon nanofiber aerogels by template-directed hydrothermal carbonization of nitrogen-containing carbohydrates. Nano Energy 19, 117 (2016).
S. Mahadk-Khanolkar, S. Donthula, A. Bang, C. Wisner, C. Sotiroupolous-Leventis, and N. Leventis: Polybenzoxazine aerogels. 2. Interpenetrating networks with iron oxide and the carbothermal synthesis of highly porous monolithic pure iron(0) aerogels as energetic materials. Chem. Mater. 26, 1318 (2014).
Y. Tang, K. Yeo, Y. Chen, L. Yap, W. Xiong, and W. Cheng: Ultralow-density copper nanowire aerogel monoliths with tunable mechanical and electrical properties. J. Mater. Chem. A 1, 6723 (2013).
Y. Tang, S. Gong, Y. Chen, L. Yap, and W. Cheng: Manufacturable conducting rubber ambers and stretchable conductors from copper nanowire aerogel monoliths. ACS Nano 8, 5707 (2014).
W. Liu, A. Herrmann, N. Bigall, P. Rodriguez, D. Wen, M. Oezaslan, T. Schmidt, N. Gaponik, and A. Eychmuller: Noble metal aerogels-synthesis, characterization, and application as electrocatalysts. Acc. Chem. Res. 48, 154 (2015).
P. Zhao, N. Li, and D. Astruc: State of the art in gold nanoparticle synthesis. Coord. Chem. Rev. 257, 638 (2013).
D. Wen, A. Herrmann, L. Borchardt, F. Simon, W. Liu, S. Kaskel, and A. Eychmuller: Controlling the growth of palladium aerogels with high-performance toward bioelectrocatalytic oxidation of glucose. J. Am. Chem. Soc. 136, 2727 (2014).
N. Jana, L. Gearheart, and C. Murphy: Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template. Adv. Mater. 13, 1389 (2001).
D. Walsh, L. Arcelli, T. Ikoma, J. Tanaka, and S. Mann: Dextran templating for the synthesis of metallic and metal oxide sponges. Nat. Mater. 2, 386 (2003).
Y. Song, D. Zhang, W. Goa, and X. Xia: Nonenzymatic glucose detection by using a three-dimensionally ordered, macroporous platinum template. Chem.–Eur. J. 11, 2177 (2005).
N. Bigall, A. Herrmann, M. Vogel, M. Rose, P. Simon, W. Carrillo-Cabrera, D. Dorfs, S. Kaskel, N. Gaponik, and A. Eychmuller: Hydrogels and aerogels from noble metal nanoparticles. Angew. Chem., Int. Ed. 48, 9731 (2009).
N. Bigall and A. Eychmuller: Synthesis of noble metal nanoparticles and their non-ordered superstructures. Philos. Trans. R. Soc., A 368, 1385 (2010).
W. Liu, P. Rodriguez, L. Borchardt, A. Foelske, J. Yuan, A. Herrmann, D. Geiger, Z. Zheng, S. Kaskel, N. Gaponik, R. Kotz, T. Schmidt, and A. Eychmuller: Bimetallic aerogels: High-performance electrocatalysts for the oxygen reduction reaction. Angew. Chem., Int. Ed. 52, 9849 (2013).
D. Wen, W. Liu, D. Haubold, C. Zhu, M. Oschatz, M. Holzchuh, A. Wolf, F. Simon, S. Kaskel, and A. Eychmuller: Gold aerogels: Three-dimensional assembly of nanoparticles and their use as electrocatalytic interfaces. ACS Nano 10, 2559 (2016).
Y. Ding, M. Chen, and J. Erlebacher: Metallic mesoporous nanocomposites for electrocatalysis. J. Am. Chem. Soc. 126, 6876 (2004).
W. Liu, A. Herrmann, D. Geiger, L. Borchardt, F. Simon, S. Kaskel, N. Gaponik, and A. Eychmuller: High-performance electrocatalysis on palladium aerogels. Angew. Chem., Int. Ed. 51, 5743 (2012).
A. Herrmann, P. Formanek, L. Borchardt, M. Klose, L. Giebeler, J. Eckert, S. Kaskel, N. Gaponik, and A. Eychmüller: Multimetallic aerogels by template-free self-assembly of Au, Ag, Pt, and Pd nanoparticles. Chem. Mater. 26, 1074 (2014).
K. Ameen, T. Rajasekharan, and M. Rajasekharan: Grain size dependence of physico-optical properties of nanometallic silver in silica aerogel matrix. J. Non-Cryst. Solids 352, 737 (2006).
G. Qin, J. Liu, T. Balaji, X. Xu, H. Matsunaga, Y. Hakuta, L. Zuo, and P. Raveendran: A facile and template-free method to prepare mesoporous gold sponge and its pore size control. J. Phys. Chem. C 112, 10352 (2008).
K. Krishna, C. Sandeep, R. Philip, and M. Eswaramoorthy: Mixing does the magic: A rapid synthesis of high surface area noble metal nanosponges showing broadband nonlinear optical response. ACS Nano 5, 2681 (2010).
S. Kistler: Coherent expanded aerogels and jellies. Nature 127, 741 (1931).
A. Du, B. Zhou, Z. Zhang, and J. Shen: A special material or a new state of matter: A review and reconsideration of the aerogel. Materials 6, 941 (2013).
B. Tappan, S. Steiner, and E. Luther: Nanoporous metal foams. Angew. Chem., Int. Ed. 49, 4544 (2010).
B. Brunauer, P. Emmett, and P. Teller: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309 (1938).
E. Barrett, L. Joyner, and P. Halenda: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373 (1951).
R. de Levie: On porous electrodes in electrolyte solutions-IV. Electrochim. Acta 9, 1231 (1964).
H. Keiser, K. Beccu, and M. Gutjahr: Evaluation of the pore structure of porous electrodes from impedance measurements. Electrochim. Acta 21, 539 (1976).
C. Schneider, W. Rasband, and K. Eliceiri: NIH image to ImageJ: 25 years of image analysis. Nat. Methods 9, 671 (2012).
K. Sing, D. Everett, R. Haul, L. Moscou, R. Pierotti, J. Rouquerol, and T. Siemieniewska: International union of pure and applied chemistry, IUPAC. Pure Appl. Chem. 57, 603 (1985).
S. Wang and W. Tseng: Aggregate structure and crystallite size of platinum nanoparticles synthesized by ethanol reduction. J. Nanopart. Res. 11, 947 (2009).
M. Thommes, K. Kaneko, A. Neimark, J. Oliver, F. Rodriguez-Reinoso, J. Rouquerol, and K. Sing: Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl. Chem. 87, 1051 (2015).
X. Liu, R. Zhang, L. Zhan, D. Long, W. Qiao, J. Yang, and L. Ling: Impedance of carbon aerogel/activated carbon composites as electrodes of electrochemical capacitors in aprotic electrolyte. New Carbon Mater. 22, 153 (2007).
J. Gamby, P. Taberna, P. Simon, J. Fauvarque, and M. Chesneau: Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J. Power Sources 101, 109 (2001).
R. Farma, M. Deraman, Awitdrus, I.A. Talib, R. Omar, J.G. Manjunatha, M.M. Ishak, N.H. Basri, and B.N.M. Dolah: Physical and electrochemical properties of supercapacitor electrodes derived from carbon nanotube and biomass carbon. Int. J. Electrochem. Sci. 8, 257 (2013).
H. Song, Y. Jung, K. Lee, and L. Dao: Electrochemical impedance spectroscopy of porous electrodes: The effect of pore size distribution. Electrochim. Acta 44, 3513 (1999).
J. Bisquert: Influence of the boundaries in the impedance of porous film electrodes. Phys. Chem. Chem. Phys. 2, 4185 (2000).
J. Bisquert: Theory of the impedance of electron diffusion and recombination in a thin layer. J. Phys. Chem. B 106, 325 (2002).
J. Bisquert, G. Garcia-Belmonte, P. Bueno, E. Longo, and L. Bulhoes: Impedance of constant phase element (CPE)-blocked diffusion in film electrodes. J. Electroanal. Chem. 452, 229 (1998).
M. Lukaszewski, M. Sosko, and A. Czerwinski: Electrochemical methods of real surface area determination of noble metal electrodes—An overview. Int. J. Electrochem. Sci. 11, 4442 (2016).
A. Kornyshev and M. Irbakh: Double-layer capacitance on a rough metal surface. Phys. Rev. E 53, 6192 (1996).
ACKNOWLEDGMENTS
The authors are grateful to Dr. Deryn Chu at the Army Research Laboratory-Sensors and Electron Devices Directorate, Dr. Christopher Haines at the Armament Research, Development and Engineering Center, U.S. Army RDECOM-ARDEC, and Dr. Stephen Bartolucci at the U.S. Army Benet Laboratories for their assistance. This work was supported by a Faculty Development Research Fund grant from the United States Military Academy, West Point.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Burpo, F.J., Nagelli, E.A., Morris, L.A. et al. Direct solution-based reduction synthesis of Au, Pd, and Pt aerogels. Journal of Materials Research 32, 4153–4165 (2017). https://doi.org/10.1557/jmr.2017.412
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2017.412