Skip to main content
Log in

Preparation of ZnO-supported 13X zeolite particles and their antimicrobial mechanism

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

To improve the antimicrobial properties of ZnO, ZnO-supported 13X zeolite (X-ZnO) was prepared via the facile chemical method. Antimicrobial activities of X-ZnO and ZnO were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. X-ZnO showed noticeable antimicrobial activities against E. coli and S. aureus under visible light conditions, especially against E. coli. The minimum inhibitory concentration (MIC) of X-ZnO against E. coli was 0.12–0.24 mg/mL. However, there were still much bacteria alive in the nano-ZnO suspensions at the same concentration. To elucidate the antimicrobial activities of X-ZnO, the average concentration of the total reactive oxygen species (ROS) and Zn2+ ions released from X-ZnO and nano-ZnO were quantitatively analyzed. The obtained results indicated that the average concentration of ROS produced by supported ZnO was much higher than that of nano-ZnO. And the released Zn2+ ions from X-ZnO and nano-ZnO suspensions were much lower than the MIC of Zn2+. Thus, it is believed that the production of ROS in X-ZnO and nano-ZnO suspensions resulted in the difference of antibacterial activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. P.J.P. Espitia, N.F.F. Soares, J.S.R. Coimbra, N.J. de Andrade, and E.A.A. Medeiros: Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 5, 1447 (2012).

    Article  CAS  Google Scholar 

  2. J. Sawai: Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO, and CaO) by conductimetric assay. J. Microbiol. Methods 54, 177 (2003).

    Article  CAS  Google Scholar 

  3. M. Rai, A. Yadav, and A. Gade: Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76 (2009).

    Article  CAS  Google Scholar 

  4. E.L. Bradley, L. Castle, and Q. Chaudhry: Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci. Technol. 22, 604 (2011).

    Article  CAS  Google Scholar 

  5. N. Cioff, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli, L. Sabbatini, T. Bleve-Zacheo, M. D’Alessio, P.G. Zambonin, and E. Traversa: Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem. Mater. 17, 5255 (2005).

    Article  CAS  Google Scholar 

  6. L.K. Adams, D.Y. Lyon, and P.J.J. Alvarez: Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40, 3527 (2006).

    Article  CAS  Google Scholar 

  7. K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, and A. Punnoose: Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90, 213902 (2007).

    Article  CAS  Google Scholar 

  8. T. Gordon, B. Perlstein, O. Houbara, I. Felner, E. Banin, and S. Margel: Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf., A 374, 1 (2011).

    Article  CAS  Google Scholar 

  9. D. Yan, G. Yin, Z. Huang, L. Li, X. Liao, X. Chen, Y. Yao, and B. Hao: Cellular compatibility of biomineralized ZnO nanoparticles based on prokaryotic and eukaryotic systems. Langmuir 27, 13206 (2011).

    Article  CAS  Google Scholar 

  10. R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, and F. Fiévet: Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6, 866 (2006).

    Article  CAS  Google Scholar 

  11. T. Ohira, O. Yamamoto, Y. Iida, and Z. Nakagawa: Antibacterial activity of ZnO powder with crystallographic orientation. J. Mater. Sci.: Mater. Med. 19, 1407 (2008).

    CAS  Google Scholar 

  12. M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, and G. Manivannan: Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. J. Nanomed. Nanotechnol. 7, 184 (2011).

    Article  CAS  Google Scholar 

  13. Y. Xie, Y. He, P.L. Irwin, T. Jin, and X. Shi: Antibacterial activity and mechanism of action of zinc oxide nanoparticles against campylobacter jejuni. Appl. Environ. Microbiol. 77, 2325 (2011).

    Article  CAS  Google Scholar 

  14. L. Zhang, J. Jiang, Y. Ding, M. Povey, and D. York: Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9, 479 (2007).

    Article  CAS  Google Scholar 

  15. N. Jones, B. Ray, K.T. Ranjit, and A.C. Manna: Antibacterial activity of ZnO nanoparticle suspensions on abroad spectrum of microorganisms. FEMS Microbiol. Lett. 279, 71 (2008).

    Article  CAS  Google Scholar 

  16. H. Yang, C. Liu, D. Yang, H. Zhang, and Z. Xi: Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. J. Appl. Toxicol. 29, 69 (2009).

    Article  CAS  Google Scholar 

  17. G. Applerot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, and A. Gedanken: Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv. Funct. Mater. 19, 842 (2009).

    Article  CAS  Google Scholar 

  18. K.R. Raghupathi, R.T. Koodali, and A.C. Manna: Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27, 4020 (2011).

    Article  CAS  Google Scholar 

  19. X. Xu, D. Chen, Z. Yi, M. Jiang, L. Wang, Z. Zhou, X. Fan, Y. Wang, and D. Hui: Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir 29, 5573 (2013).

    Article  CAS  Google Scholar 

  20. G.D. Mihai, V. Meynen, M. Mertens, N. Bilba, P. Cool, and E.F. Vansant: ZnO nanoparticles supported on mesoporous MCM-41 and SBA-15: A comparative physicochemical and photocatalytic study. J. Mater. Sci. 45, 5786 (2010).

    Article  CAS  Google Scholar 

  21. X. Chen, Q. Meng, J. Chen, and Y. Long: A facile route to synthesize mesoporous ZSM-5 zeolite incorporating high ZnO loading in mesopores. Microporous Mesoporous Mater. 153, 198 (2012).

    Article  CAS  Google Scholar 

  22. A.A. Alswat, M. Bin Ahmad, T.A. Saleh, M.Z. Bin Hussein, and N.A. Ibrahim: Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite. Mater. Sci. Eng., C 68, 505 (2016).

    Article  CAS  Google Scholar 

  23. A.A. Alswat, M. Bin Ahmad, and T.A. Saleh: Preparation and characterization of zeolitezinc oxide–copper oxide nanocomposite: Antibacterial activities. Colloid Interface Sci. Commun. 16, 19 (2017).

    Article  CAS  Google Scholar 

  24. A.A. Alswat, M. Bin Ahmad, M.Z. Hussein, N.A. Ibrahim, and T.A. Saleh: Copper oxide nanoparticles-loaded zeolite and its characteristics and antibacterial activities. J. Mater. Sci. Technol. 33, 889 (2017).

    Article  CAS  Google Scholar 

  25. K. Kasemets, A. Ivask, H.C. Dubourguier, and A. Kahru: Toxicity of nanoparticles of ZnO, CuO, and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. In Vitro 23, 1116 (2009).

    Article  CAS  Google Scholar 

  26. S.J. Park, Y.C. Park, S.W. Lee, M.S. Jeong, K.N. Yu, H. Jung, J.K. Lee, J.S. Kim, and M.H. Cho: Comparing the toxic mechanism of synthesized zinc oxide nanomaterials by physicochemical characterization and reactive oxygen species properties. Toxicol. Lett. 207, 197 (2011).

    Article  CAS  Google Scholar 

  27. T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, and A.E. Nel: Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2, 2121 (2008).

    Article  CAS  Google Scholar 

  28. M. Li, L. Zhu, and D. Lin: Toxicity of ZnO nanoparticles to Escherichia coli: Mechanism and the influence of medium components. Environ. Sci. Technol. 45, 1977 (2011).

    Article  CAS  Google Scholar 

  29. H. Yin, P.S. Casey, M.J. McCall, and M. Fenech: Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. Langmuir 26, 15399 (2010).

    Article  CAS  Google Scholar 

  30. I. Perelshtein, G. Applerot, N. Perkas, E. Wehrschetz-Sigl, A. Hasmann, G.M. Guebitz, and A. Gedanken: Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. ACS Appl. Mater. Interfaces 1, 363 (2009).

    Article  CAS  Google Scholar 

  31. Y. Li, W. Zhang, J. Niu, and Y. Chen: Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal–oxide nanoparticles. ACS Nano 6, 5164 (2012).

    Article  CAS  Google Scholar 

  32. T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J.I. Yeh, M.R. Wiesner, and A.E. Nel: Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6, 1794 (2006).

    Article  CAS  Google Scholar 

  33. E. Burello and A.P. Worth: A therotical framework for predicting the dioxide stress potential of oxide nanoparticles. Nanotoxicology 5, 228 (2011).

    Article  CAS  Google Scholar 

  34. A. Lipovsky, Y. Nitzan, A. Gedanken, and R. Lubart: Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnology 22, 105101 (2011).

    Article  CAS  Google Scholar 

  35. J. Jiang, G. Li, Q. Ding, and K. Mai: Ultraviolet resistance and antimicrobial properties of ZnO-supported zeolite filled isotactic polypropylene composites. Polym. Degrad. Stab. 97, 833 (2012).

    Article  CAS  Google Scholar 

  36. M. Li, G. Li, J. Jiang, Y. Tao, and K. Mai: Preparation, antimicrobial, crystallization and mechanical properties of nano-ZnO-supported zeolite filled polypropylene random copolymer composites. Compos. Sci. Technol. 81, 30 (2013).

    Article  CAS  Google Scholar 

  37. M. Li, G. Li, Y. Fan, J. Jiang, Q. Ding, X. Dai, and K. Mai: Effect of nano-ZnO-supported 13X zeolite on photo-oxidation degradation and antimicrobial properties of polypropylene random copolymer. Polym. Bull. 71, 2981 (2014).

    Article  CAS  Google Scholar 

  38. X. Xu, Z. Zhou, and W. Zhu: Studies on the active oxygen in zinc oxides with different morphologies. Mater. Sci. Forum 610–613, 229 (2009).

    Article  Google Scholar 

  39. X. Xu, X. Duan, Z. Yi, Z. Zhou, X. Fan, and Y. Wang: Photocatalytic production of superoxide ion in the aqueous suspensions of two kinds of ZnO under simulated solar light. Catal. Commun. 12, 169 (2010).

    Article  CAS  Google Scholar 

  40. P. Schopfer: Histochemical demonstration and localization of H2O2 in organs of higher plants by tissue printing on nitrocellulose paper. Plant Physiol. 104, 1269 (1994).

    Article  CAS  Google Scholar 

  41. H.A. Sani, M.B. Ahmad, M.Z. Hussein, N.A. Ibrahim, A. Musa, and T.A. Saleh: Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions. Process Saf. Environ. Prot. 109, 97 (2017).

    Article  CAS  Google Scholar 

  42. J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, and C. Yan: Control of ZnO morphology via a simple solution route. Chem. Mater. 14, 4172 (2002).

    Article  CAS  Google Scholar 

  43. U. Pal and P. Santiago: Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process. J. Phys. Chem. B 109, 15317 (2005).

    Article  CAS  Google Scholar 

  44. H.C. Ong and G.T. Du: The evolution of defect emissions in oxygen-deficient and -surplus ZnO thin films: The implication of different growth modes. J. Cryst. Growth 265, 471 (2004).

    Article  CAS  Google Scholar 

  45. S.A. Studenikin, N. Golego, and M. Cocivera: Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys. 84, 2287 (1998).

    Article  CAS  Google Scholar 

  46. B. Lin and Z. Fu: Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79, 943 (2001).

    Article  CAS  Google Scholar 

  47. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, and J.A. Voigt: Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983 (1996).

    Article  CAS  Google Scholar 

  48. A. Nel, T. Xia, L. Mädler, and N. Li: Toxic potential of materials at the nanolevel. Science 311, 622 (2006).

    Article  CAS  Google Scholar 

  49. O. Choi and Z. Hu: Size dependent and reactive oxygen species. Environ. Sci. Technol. 42, 4583 (2008).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors thank the financial support of the Natural Science Foundation of China (Grants Nos. 51173208 and 51373202) and the Science Foundation of Guangdong Province (Grant No. S2011020001212). They thank the open project of Guangdong Provincial Key Laboratory of High Performance Resin-based Composites for the provided support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kancheng Mai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, M., Wu, L., Zhang, Z. et al. Preparation of ZnO-supported 13X zeolite particles and their antimicrobial mechanism. Journal of Materials Research 32, 4232–4240 (2017). https://doi.org/10.1557/jmr.2017.410

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.410

Navigation