Abstract
To improve the antimicrobial properties of ZnO, ZnO-supported 13X zeolite (X-ZnO) was prepared via the facile chemical method. Antimicrobial activities of X-ZnO and ZnO were tested against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. X-ZnO showed noticeable antimicrobial activities against E. coli and S. aureus under visible light conditions, especially against E. coli. The minimum inhibitory concentration (MIC) of X-ZnO against E. coli was 0.12–0.24 mg/mL. However, there were still much bacteria alive in the nano-ZnO suspensions at the same concentration. To elucidate the antimicrobial activities of X-ZnO, the average concentration of the total reactive oxygen species (ROS) and Zn2+ ions released from X-ZnO and nano-ZnO were quantitatively analyzed. The obtained results indicated that the average concentration of ROS produced by supported ZnO was much higher than that of nano-ZnO. And the released Zn2+ ions from X-ZnO and nano-ZnO suspensions were much lower than the MIC of Zn2+. Thus, it is believed that the production of ROS in X-ZnO and nano-ZnO suspensions resulted in the difference of antibacterial activities.
Similar content being viewed by others
References
P.J.P. Espitia, N.F.F. Soares, J.S.R. Coimbra, N.J. de Andrade, and E.A.A. Medeiros: Zinc oxide nanoparticles: Synthesis, antimicrobial activity and food packaging applications. Food Bioprocess Technol. 5, 1447 (2012).
J. Sawai: Quantitative evaluation of antibacterial activities of metallic oxide powders (ZnO, MgO, and CaO) by conductimetric assay. J. Microbiol. Methods 54, 177 (2003).
M. Rai, A. Yadav, and A. Gade: Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 27, 76 (2009).
E.L. Bradley, L. Castle, and Q. Chaudhry: Applications of nanomaterials in food packaging with a consideration of opportunities for developing countries. Trends Food Sci. Technol. 22, 604 (2011).
N. Cioff, L. Torsi, N. Ditaranto, G. Tantillo, L. Ghibelli, L. Sabbatini, T. Bleve-Zacheo, M. D’Alessio, P.G. Zambonin, and E. Traversa: Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem. Mater. 17, 5255 (2005).
L.K. Adams, D.Y. Lyon, and P.J.J. Alvarez: Comparative eco-toxicity of nanoscale TiO2, SiO2, and ZnO water suspensions. Water Res. 40, 3527 (2006).
K.M. Reddy, K. Feris, J. Bell, D.G. Wingett, C. Hanley, and A. Punnoose: Selective toxicity of zinc oxide nanoparticles to prokaryotic and eukaryotic systems. Appl. Phys. Lett. 90, 213902 (2007).
T. Gordon, B. Perlstein, O. Houbara, I. Felner, E. Banin, and S. Margel: Synthesis and characterization of zinc/iron oxide composite nanoparticles and their antibacterial properties. Colloids Surf., A 374, 1 (2011).
D. Yan, G. Yin, Z. Huang, L. Li, X. Liao, X. Chen, Y. Yao, and B. Hao: Cellular compatibility of biomineralized ZnO nanoparticles based on prokaryotic and eukaryotic systems. Langmuir 27, 13206 (2011).
R. Brayner, R. Ferrari-Iliou, N. Brivois, S. Djediat, M.F. Benedetti, and F. Fiévet: Toxicological impact studies based on Escherichia coli bacteria in ultrafine ZnO nanoparticles colloidal medium. Nano Lett. 6, 866 (2006).
T. Ohira, O. Yamamoto, Y. Iida, and Z. Nakagawa: Antibacterial activity of ZnO powder with crystallographic orientation. J. Mater. Sci.: Mater. Med. 19, 1407 (2008).
M. Premanathan, K. Karthikeyan, K. Jeyasubramanian, and G. Manivannan: Selective toxicity of ZnO nanoparticles toward Gram-positive bacteria and cancer cells by apoptosis through lipid peroxidation. J. Nanomed. Nanotechnol. 7, 184 (2011).
Y. Xie, Y. He, P.L. Irwin, T. Jin, and X. Shi: Antibacterial activity and mechanism of action of zinc oxide nanoparticles against campylobacter jejuni. Appl. Environ. Microbiol. 77, 2325 (2011).
L. Zhang, J. Jiang, Y. Ding, M. Povey, and D. York: Investigation into the antibacterial behaviour of suspensions of ZnO nanoparticles (ZnO nanofluids). J. Nanopart. Res. 9, 479 (2007).
N. Jones, B. Ray, K.T. Ranjit, and A.C. Manna: Antibacterial activity of ZnO nanoparticle suspensions on abroad spectrum of microorganisms. FEMS Microbiol. Lett. 279, 71 (2008).
H. Yang, C. Liu, D. Yang, H. Zhang, and Z. Xi: Comparative study of cytotoxicity, oxidative stress and genotoxicity induced by four typical nanomaterials: The role of particle size, shape and composition. J. Appl. Toxicol. 29, 69 (2009).
G. Applerot, A. Lipovsky, R. Dror, N. Perkas, Y. Nitzan, R. Lubart, and A. Gedanken: Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury. Adv. Funct. Mater. 19, 842 (2009).
K.R. Raghupathi, R.T. Koodali, and A.C. Manna: Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles. Langmuir 27, 4020 (2011).
X. Xu, D. Chen, Z. Yi, M. Jiang, L. Wang, Z. Zhou, X. Fan, Y. Wang, and D. Hui: Antimicrobial mechanism based on H2O2 generation at oxygen vacancies in ZnO crystals. Langmuir 29, 5573 (2013).
G.D. Mihai, V. Meynen, M. Mertens, N. Bilba, P. Cool, and E.F. Vansant: ZnO nanoparticles supported on mesoporous MCM-41 and SBA-15: A comparative physicochemical and photocatalytic study. J. Mater. Sci. 45, 5786 (2010).
X. Chen, Q. Meng, J. Chen, and Y. Long: A facile route to synthesize mesoporous ZSM-5 zeolite incorporating high ZnO loading in mesopores. Microporous Mesoporous Mater. 153, 198 (2012).
A.A. Alswat, M. Bin Ahmad, T.A. Saleh, M.Z. Bin Hussein, and N.A. Ibrahim: Effect of zinc oxide amounts on the properties and antibacterial activities of zeolite/zinc oxide nanocomposite. Mater. Sci. Eng., C 68, 505 (2016).
A.A. Alswat, M. Bin Ahmad, and T.A. Saleh: Preparation and characterization of zeolitezinc oxide–copper oxide nanocomposite: Antibacterial activities. Colloid Interface Sci. Commun. 16, 19 (2017).
A.A. Alswat, M. Bin Ahmad, M.Z. Hussein, N.A. Ibrahim, and T.A. Saleh: Copper oxide nanoparticles-loaded zeolite and its characteristics and antibacterial activities. J. Mater. Sci. Technol. 33, 889 (2017).
K. Kasemets, A. Ivask, H.C. Dubourguier, and A. Kahru: Toxicity of nanoparticles of ZnO, CuO, and TiO2 to yeast Saccharomyces cerevisiae. Toxicol. In Vitro 23, 1116 (2009).
S.J. Park, Y.C. Park, S.W. Lee, M.S. Jeong, K.N. Yu, H. Jung, J.K. Lee, J.S. Kim, and M.H. Cho: Comparing the toxic mechanism of synthesized zinc oxide nanomaterials by physicochemical characterization and reactive oxygen species properties. Toxicol. Lett. 207, 197 (2011).
T. Xia, M. Kovochich, M. Liong, L. Mädler, B. Gilbert, H. Shi, J.I. Yeh, J.I. Zink, and A.E. Nel: Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano 2, 2121 (2008).
M. Li, L. Zhu, and D. Lin: Toxicity of ZnO nanoparticles to Escherichia coli: Mechanism and the influence of medium components. Environ. Sci. Technol. 45, 1977 (2011).
H. Yin, P.S. Casey, M.J. McCall, and M. Fenech: Effects of surface chemistry on cytotoxicity, genotoxicity, and the generation of reactive oxygen species induced by ZnO nanoparticles. Langmuir 26, 15399 (2010).
I. Perelshtein, G. Applerot, N. Perkas, E. Wehrschetz-Sigl, A. Hasmann, G.M. Guebitz, and A. Gedanken: Antibacterial properties of an in situ generated and simultaneously deposited nanocrystalline ZnO on fabrics. ACS Appl. Mater. Interfaces 1, 363 (2009).
Y. Li, W. Zhang, J. Niu, and Y. Chen: Mechanism of photogenerated reactive oxygen species and correlation with the antibacterial properties of engineered metal–oxide nanoparticles. ACS Nano 6, 5164 (2012).
T. Xia, M. Kovochich, J. Brant, M. Hotze, J. Sempf, T. Oberley, C. Sioutas, J.I. Yeh, M.R. Wiesner, and A.E. Nel: Comparison of the abilities of ambient and manufactured nanoparticles to induce cellular toxicity according to an oxidative stress paradigm. Nano Lett. 6, 1794 (2006).
E. Burello and A.P. Worth: A therotical framework for predicting the dioxide stress potential of oxide nanoparticles. Nanotoxicology 5, 228 (2011).
A. Lipovsky, Y. Nitzan, A. Gedanken, and R. Lubart: Antifungal activity of ZnO nanoparticles-the role of ROS mediated cell injury. Nanotechnology 22, 105101 (2011).
J. Jiang, G. Li, Q. Ding, and K. Mai: Ultraviolet resistance and antimicrobial properties of ZnO-supported zeolite filled isotactic polypropylene composites. Polym. Degrad. Stab. 97, 833 (2012).
M. Li, G. Li, J. Jiang, Y. Tao, and K. Mai: Preparation, antimicrobial, crystallization and mechanical properties of nano-ZnO-supported zeolite filled polypropylene random copolymer composites. Compos. Sci. Technol. 81, 30 (2013).
M. Li, G. Li, Y. Fan, J. Jiang, Q. Ding, X. Dai, and K. Mai: Effect of nano-ZnO-supported 13X zeolite on photo-oxidation degradation and antimicrobial properties of polypropylene random copolymer. Polym. Bull. 71, 2981 (2014).
X. Xu, Z. Zhou, and W. Zhu: Studies on the active oxygen in zinc oxides with different morphologies. Mater. Sci. Forum 610–613, 229 (2009).
X. Xu, X. Duan, Z. Yi, Z. Zhou, X. Fan, and Y. Wang: Photocatalytic production of superoxide ion in the aqueous suspensions of two kinds of ZnO under simulated solar light. Catal. Commun. 12, 169 (2010).
P. Schopfer: Histochemical demonstration and localization of H2O2 in organs of higher plants by tissue printing on nitrocellulose paper. Plant Physiol. 104, 1269 (1994).
H.A. Sani, M.B. Ahmad, M.Z. Hussein, N.A. Ibrahim, A. Musa, and T.A. Saleh: Nanocomposite of ZnO with montmorillonite for removal of lead and copper ions from aqueous solutions. Process Saf. Environ. Prot. 109, 97 (2017).
J. Zhang, L. Sun, J. Yin, H. Su, C. Liao, and C. Yan: Control of ZnO morphology via a simple solution route. Chem. Mater. 14, 4172 (2002).
U. Pal and P. Santiago: Controlling the morphology of ZnO nanostructures in a low-temperature hydrothermal process. J. Phys. Chem. B 109, 15317 (2005).
H.C. Ong and G.T. Du: The evolution of defect emissions in oxygen-deficient and -surplus ZnO thin films: The implication of different growth modes. J. Cryst. Growth 265, 471 (2004).
S.A. Studenikin, N. Golego, and M. Cocivera: Fabrication of green and orange photoluminescent, undoped ZnO films using spray pyrolysis. J. Appl. Phys. 84, 2287 (1998).
B. Lin and Z. Fu: Green luminescent center in undoped zinc oxide films deposited on silicon substrates. Appl. Phys. Lett. 79, 943 (2001).
K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, and J.A. Voigt: Mechanisms behind green photoluminescence in ZnO phosphor powders. J. Appl. Phys. 79, 7983 (1996).
A. Nel, T. Xia, L. Mädler, and N. Li: Toxic potential of materials at the nanolevel. Science 311, 622 (2006).
O. Choi and Z. Hu: Size dependent and reactive oxygen species. Environ. Sci. Technol. 42, 4583 (2008).
ACKNOWLEDGMENTS
The authors thank the financial support of the Natural Science Foundation of China (Grants Nos. 51173208 and 51373202) and the Science Foundation of Guangdong Province (Grant No. S2011020001212). They thank the open project of Guangdong Provincial Key Laboratory of High Performance Resin-based Composites for the provided support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Li, M., Wu, L., Zhang, Z. et al. Preparation of ZnO-supported 13X zeolite particles and their antimicrobial mechanism. Journal of Materials Research 32, 4232–4240 (2017). https://doi.org/10.1557/jmr.2017.410
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2017.410