Skip to main content
Log in

Characterization of optomechanical modes in multilayer stack of graphene sheets

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Graphene, a two-dimensional (2D) crystalline material exhibits unique electronic, optical, and mechanical properties which makes it a promising candidate for optomechanical and optoelectronic devices. The giant plasmonic activity of graphene sheets enables low-dimensional confinement of light and enhanced light–matter interaction leading to significant enhancement of optical forces which may give rise to large mechanical deformations on account of ultralow mass density and flexibility of graphene. The multilayer stack and heterostructures of 2D materials provide access to a spectrum of guided modes which can be used to tailor the optical forces and mechanical states of graphene sheets. Here, we study the optical forces arising from the coupling of guided modes in layered structures of graphene sheets. We obtain the mechanical deformation states corresponding to each guided mode and demonstrate that the optical forces can be adjusted by changing the interlayer spacing as well as the chemical potential of graphene layers. Our results can be used for various designs of graphene-based optomechanical devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7

Similar content being viewed by others

References

  1. A. Grigorenko, M. Polini, and K. Novoselov: Graphene plasmonics. Nat. Photonics 6, 749 (2012).

    Article  CAS  Google Scholar 

  2. M. Jablan, H. Buljan, and M. Soljačić: Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).

    Article  CAS  Google Scholar 

  3. A. Woessner, M. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. Koppens: Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421 (2014).

    Article  CAS  Google Scholar 

  4. S. Inampudi and H. Mosallaei: Fresnel refraction and diffraction of surface plasmon polaritons in two-dimensional conducting sheets. ACS Omega 1, 843 (2016).

    Article  CAS  Google Scholar 

  5. F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. Shen: Gate-variable optical transitions in graphene. Science 320, 206 (2008).

    Article  CAS  Google Scholar 

  6. Y. Zhang, Z. Jiang, J. Small, M. Purewal, Y. Tan, M. Fazlollahi, J. Chudow, J. Jaszczak, H. Stormer, and P. Kim: Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett. 96, 136806 (2006).

    Article  CAS  Google Scholar 

  7. P. Chen and A. Alù: Atomically thin surface cloak using graphene monolayers. ACS Nano 5, 5855 (2011).

    Article  CAS  Google Scholar 

  8. X. Miao, S. Tongay, M. Petterson, K. Berke, A. Rinzler, B. Appleton, and A. Hebard: High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745 (2012).

    Article  CAS  Google Scholar 

  9. S. Inampudi, J. Cheng, and H. Mosallaei: Graphene-based near-field optical microscopy: High-resolution imaging using reconfigurable gratings. Appl. Opt. 56, 3132 (2017).

    Article  CAS  Google Scholar 

  10. A. Forouzmand and A. Yakovlev: Tunable dual-band subwavelength imaging with a wire medium slab loaded with nanostructured graphene metasurfaces. AIP Adv. 5, 077108 (2015).

    Article  CAS  Google Scholar 

  11. A. Forouzmand, H. Bernety, and A. Yakovlev: Graphene-loaded wire medium for tunable broadband subwavelength imaging. Phys. Rev. B 92, 085402 (2015).

    Article  CAS  Google Scholar 

  12. J. Cheng, S. Jafar-Zanjani, and H. Mosallaei: Real-time two-dimensional beam steering with gate-tunable materials: A theoretical investigation. Appl. Opt. 55, 6137 (2016).

    Article  Google Scholar 

  13. S. Jafar-Zanjani, J. Cheng, and H. Mosallaei: Light manipulation with flat and conformal inhomogeneous dispersive impedance sheets: An efficient FDTD modeling. Appl. Opt. 55, 2967 (2016).

    Article  Google Scholar 

  14. J. Cheng, W. Wang, H. Mosallaei, and E. Kaxiras: Surface plasmon engineering in graphene functionalized with organic molecules: A multiscale theoretical investigation. Nano Lett. 14, 50 (2014).

    Article  CAS  Google Scholar 

  15. Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu: Graphene plasmonic metasurfaces to steer infrared light. Sci. Rep. 5, 12423 (2015).

    Article  Google Scholar 

  16. C. Lee, X. Wei, J. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).

    Article  CAS  Google Scholar 

  17. G. Tsoukleri, J. Parthenios, K. Papagelis, R. Jalil, A. Ferrari, A. Geim, K. Novoselov, and C. Galiotis: Subjecting a graphene monolayer to tension and compression. Small 5, 2397 (2009).

    Article  CAS  Google Scholar 

  18. J. Jiang, J. Wang, and B. Li: Young’s modulus of graphene: A molecular dynamics study. Phys. Rev. B 80, 113405 (2009).

    Article  CAS  Google Scholar 

  19. S. Koenig, N. Boddeti, M. Dunn, and J. Bunch: Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543 (2011).

    Article  CAS  Google Scholar 

  20. J. Bunch and M. Dunn: Adhesion mechanics of graphene membranes. Solid State Commun. 152, 1359 (2012).

    Article  CAS  Google Scholar 

  21. C. Chen, S. Rosenblatt, K. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. Stormer, T. Heinz, and J. Hone: Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 4, 861 (2009).

    Article  CAS  Google Scholar 

  22. C. Chen, S. Lee, V. Deshpande, G. Lee, M. Lekas, K. Shepard, and J. Hone: Graphene mechanical oscillators with tunable frequency. Nat. Nanotechnol. 8, 923 (2013).

    Article  CAS  Google Scholar 

  23. R. Barton, I. Storch, V. Adiga, R. Sakakibara, B. Cipriany, B. Ilic, S. Wang, P. Ong, P. McEuen, J. Parpia, and H. Craighead: Photothermal self-oscillation and laser cooling of graphene optomechanical systems. Nano Lett. 12, 4681 (2012).

    Article  CAS  Google Scholar 

  24. S. Mousavi, P. Rakich, and Z. Wang: Strong THz and infrared optical forces on a suspended single-layer graphene sheet. ACS Photonics 1, 1107 (2014).

    Article  CAS  Google Scholar 

  25. M. Salary, S. Inampudi, K. Zhang, E. Tadmor, and H. Mosallaei: Mechanical actuation of graphene sheets via optically induced forces. Phys. Rev. B 94, 235403 (2016).

    Article  Google Scholar 

  26. X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang: Enhanced optical gradient forces between coupled graphene sheets. Sci. Rep. 6, 28568 (2016).

    Article  CAS  Google Scholar 

  27. L. Sun, S. Lai, and C. Jiang: Enhanced transverse optical force between paired graphene nanoribbons. IEEE J. Sel. Top. Quantum Electron. 23, 117 (2017).

    Article  Google Scholar 

  28. P. Zhang, N. Shen, T. Koschny, and C. Soukoulis: Surface-plasmon-mediated gradient force enhancement and mechanical state transitions of graphene sheets. ACS Photonics 4, 181 (2017).

    Article  CAS  Google Scholar 

  29. A. Ashkin: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156 (1970).

    Article  CAS  Google Scholar 

  30. V. Shvedov, A. Rode, Y. Izdebskaya, A. Desyatnikov, W. Krolikowski, and Y. Kivshar: Giant optical manipulation. Phys. Rev. Lett. 105, 118103 (2010).

    Article  CAS  Google Scholar 

  31. C. Soo, T. Ji, H. Jae, and S. Sang: Optical pressure exerted on a dielectric film in the evanescent field of a Gaussian beam. Opt. Commun. 129, 394 (1996).

    Article  Google Scholar 

  32. D. Woolf, M. Loncar, and F. Capasso: The forces from coupled surface plasmon polaritons in planar waveguides. Opt. Express 17, 19996 (2009).

    Article  CAS  Google Scholar 

  33. D. Li, N. Lawandy, and R. Zia: Surface phonon-polariton enhanced optical forces in silicon carbide nanostructures. Opt. Express 21, 20900 (2013).

    Article  CAS  Google Scholar 

  34. M. Povinelli, M. Ibanescu, S. Johnson, and J. Joannopoulos: Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide. Appl. Phys. Lett. 85, 1466 (2004).

    Article  CAS  Google Scholar 

  35. A. Rodriguez, A. McCauley, P. Hui, D. Woolf, E. Iwase, F. Capasso, M. Loncar, and S. Johnson: Bonding, antibonding and tunable optical forces in asymmetric membranes. Opt. Express 19, 2225 (2011).

    Article  Google Scholar 

  36. M. Povinelli, S. Johnson, M. Loncar, M. Ibanescu, E. Smythe, F. Capasso, and J. Joannopoulos: High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators. Opt. Express 13, 8286 (2005).

    Article  Google Scholar 

  37. A. Jannasch, A. Demirörs, P. van Oostrum, A. van Blaaderen, and E. Schäffer: Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nat. Photonics 6, 469 (2012).

    Article  CAS  Google Scholar 

  38. V. Garcés-Chávez, R. Quidant, P. Reece, G. Badenes, L. Torner, and K. Dholakia: Extended organization of colloidal microparticles by surface plasmon polariton excitation. Phys. Rev. B 73, 085417 (2006).

    Article  CAS  Google Scholar 

  39. A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang: Nanometric optical tweezers based on nanostructured substrates. Nat. Photonics 2, 365 (2008).

    Article  CAS  Google Scholar 

  40. M. Salary and H. Mosallaei: Tailoring optical forces for nanoparticle manipulation on layered substrates. Phys. Rev. B 94, 035410 (2016).

    Article  Google Scholar 

  41. W. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan: Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246 (2012).

    Article  CAS  Google Scholar 

  42. K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, and Y. Svirko: Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Sci. Rep. 4, 7191 (2014).

    Article  CAS  Google Scholar 

  43. S. Inampudi, M. Nazari, A. Forouzmand, and H. Mosallaei: Manipulation of surface plasmon polariton propagation on isotropic and anisotropic two-dimensional materials coupled to boron nitride heterostructures. J. Appl. Phys. 119, 025301 (2016).

    Article  CAS  Google Scholar 

  44. B. Kemp, T. Grzegorczyk, and J. Kong: Ab initio study of the radiation pressure on dielectric and magnetic media. Opt. Express 13, 9280 (2005).

    Article  Google Scholar 

  45. D. Efetov and P. Kim: Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENT

The authors acknowledge the support of the Army Research Office (W911NF-14-0247) under the Multidisciplinary University Research Initiatives program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hossein Mosallaei.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salary, M.M., Inampudi, S. & Mosallaei, H. Characterization of optomechanical modes in multilayer stack of graphene sheets. Journal of Materials Research 32, 4103–4114 (2017). https://doi.org/10.1557/jmr.2017.409

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.409

Navigation