Abstract
Graphene, a two-dimensional (2D) crystalline material exhibits unique electronic, optical, and mechanical properties which makes it a promising candidate for optomechanical and optoelectronic devices. The giant plasmonic activity of graphene sheets enables low-dimensional confinement of light and enhanced light–matter interaction leading to significant enhancement of optical forces which may give rise to large mechanical deformations on account of ultralow mass density and flexibility of graphene. The multilayer stack and heterostructures of 2D materials provide access to a spectrum of guided modes which can be used to tailor the optical forces and mechanical states of graphene sheets. Here, we study the optical forces arising from the coupling of guided modes in layered structures of graphene sheets. We obtain the mechanical deformation states corresponding to each guided mode and demonstrate that the optical forces can be adjusted by changing the interlayer spacing as well as the chemical potential of graphene layers. Our results can be used for various designs of graphene-based optomechanical devices.
Similar content being viewed by others
References
A. Grigorenko, M. Polini, and K. Novoselov: Graphene plasmonics. Nat. Photonics 6, 749 (2012).
M. Jablan, H. Buljan, and M. Soljačić: Plasmonics in graphene at infrared frequencies. Phys. Rev. B 80, 245435 (2009).
A. Woessner, M. Lundeberg, Y. Gao, A. Principi, P. Alonso-González, M. Carrega, K. Watanabe, T. Taniguchi, G. Vignale, M. Polini, J. Hone, R. Hillenbrand, and F. Koppens: Highly confined low-loss plasmons in graphene–boron nitride heterostructures. Nat. Mater. 14, 421 (2014).
S. Inampudi and H. Mosallaei: Fresnel refraction and diffraction of surface plasmon polaritons in two-dimensional conducting sheets. ACS Omega 1, 843 (2016).
F. Wang, Y. Zhang, C. Tian, C. Girit, A. Zettl, M. Crommie, and Y. Shen: Gate-variable optical transitions in graphene. Science 320, 206 (2008).
Y. Zhang, Z. Jiang, J. Small, M. Purewal, Y. Tan, M. Fazlollahi, J. Chudow, J. Jaszczak, H. Stormer, and P. Kim: Landau-level splitting in graphene in high magnetic fields. Phys. Rev. Lett. 96, 136806 (2006).
P. Chen and A. Alù: Atomically thin surface cloak using graphene monolayers. ACS Nano 5, 5855 (2011).
X. Miao, S. Tongay, M. Petterson, K. Berke, A. Rinzler, B. Appleton, and A. Hebard: High efficiency graphene solar cells by chemical doping. Nano Lett. 12, 2745 (2012).
S. Inampudi, J. Cheng, and H. Mosallaei: Graphene-based near-field optical microscopy: High-resolution imaging using reconfigurable gratings. Appl. Opt. 56, 3132 (2017).
A. Forouzmand and A. Yakovlev: Tunable dual-band subwavelength imaging with a wire medium slab loaded with nanostructured graphene metasurfaces. AIP Adv. 5, 077108 (2015).
A. Forouzmand, H. Bernety, and A. Yakovlev: Graphene-loaded wire medium for tunable broadband subwavelength imaging. Phys. Rev. B 92, 085402 (2015).
J. Cheng, S. Jafar-Zanjani, and H. Mosallaei: Real-time two-dimensional beam steering with gate-tunable materials: A theoretical investigation. Appl. Opt. 55, 6137 (2016).
S. Jafar-Zanjani, J. Cheng, and H. Mosallaei: Light manipulation with flat and conformal inhomogeneous dispersive impedance sheets: An efficient FDTD modeling. Appl. Opt. 55, 2967 (2016).
J. Cheng, W. Wang, H. Mosallaei, and E. Kaxiras: Surface plasmon engineering in graphene functionalized with organic molecules: A multiscale theoretical investigation. Nano Lett. 14, 50 (2014).
Z. Li, K. Yao, F. Xia, S. Shen, J. Tian, and Y. Liu: Graphene plasmonic metasurfaces to steer infrared light. Sci. Rep. 5, 12423 (2015).
C. Lee, X. Wei, J. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).
G. Tsoukleri, J. Parthenios, K. Papagelis, R. Jalil, A. Ferrari, A. Geim, K. Novoselov, and C. Galiotis: Subjecting a graphene monolayer to tension and compression. Small 5, 2397 (2009).
J. Jiang, J. Wang, and B. Li: Young’s modulus of graphene: A molecular dynamics study. Phys. Rev. B 80, 113405 (2009).
S. Koenig, N. Boddeti, M. Dunn, and J. Bunch: Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543 (2011).
J. Bunch and M. Dunn: Adhesion mechanics of graphene membranes. Solid State Commun. 152, 1359 (2012).
C. Chen, S. Rosenblatt, K. Bolotin, W. Kalb, P. Kim, I. Kymissis, H. Stormer, T. Heinz, and J. Hone: Performance of monolayer graphene nanomechanical resonators with electrical readout. Nat. Nanotechnol. 4, 861 (2009).
C. Chen, S. Lee, V. Deshpande, G. Lee, M. Lekas, K. Shepard, and J. Hone: Graphene mechanical oscillators with tunable frequency. Nat. Nanotechnol. 8, 923 (2013).
R. Barton, I. Storch, V. Adiga, R. Sakakibara, B. Cipriany, B. Ilic, S. Wang, P. Ong, P. McEuen, J. Parpia, and H. Craighead: Photothermal self-oscillation and laser cooling of graphene optomechanical systems. Nano Lett. 12, 4681 (2012).
S. Mousavi, P. Rakich, and Z. Wang: Strong THz and infrared optical forces on a suspended single-layer graphene sheet. ACS Photonics 1, 1107 (2014).
M. Salary, S. Inampudi, K. Zhang, E. Tadmor, and H. Mosallaei: Mechanical actuation of graphene sheets via optically induced forces. Phys. Rev. B 94, 235403 (2016).
X. Xu, L. Shi, Y. Liu, Z. Wang, and X. Zhang: Enhanced optical gradient forces between coupled graphene sheets. Sci. Rep. 6, 28568 (2016).
L. Sun, S. Lai, and C. Jiang: Enhanced transverse optical force between paired graphene nanoribbons. IEEE J. Sel. Top. Quantum Electron. 23, 117 (2017).
P. Zhang, N. Shen, T. Koschny, and C. Soukoulis: Surface-plasmon-mediated gradient force enhancement and mechanical state transitions of graphene sheets. ACS Photonics 4, 181 (2017).
A. Ashkin: Acceleration and trapping of particles by radiation pressure. Phys. Rev. Lett. 24, 156 (1970).
V. Shvedov, A. Rode, Y. Izdebskaya, A. Desyatnikov, W. Krolikowski, and Y. Kivshar: Giant optical manipulation. Phys. Rev. Lett. 105, 118103 (2010).
C. Soo, T. Ji, H. Jae, and S. Sang: Optical pressure exerted on a dielectric film in the evanescent field of a Gaussian beam. Opt. Commun. 129, 394 (1996).
D. Woolf, M. Loncar, and F. Capasso: The forces from coupled surface plasmon polaritons in planar waveguides. Opt. Express 17, 19996 (2009).
D. Li, N. Lawandy, and R. Zia: Surface phonon-polariton enhanced optical forces in silicon carbide nanostructures. Opt. Express 21, 20900 (2013).
M. Povinelli, M. Ibanescu, S. Johnson, and J. Joannopoulos: Slow-light enhancement of radiation pressure in an omnidirectional-reflector waveguide. Appl. Phys. Lett. 85, 1466 (2004).
A. Rodriguez, A. McCauley, P. Hui, D. Woolf, E. Iwase, F. Capasso, M. Loncar, and S. Johnson: Bonding, antibonding and tunable optical forces in asymmetric membranes. Opt. Express 19, 2225 (2011).
M. Povinelli, S. Johnson, M. Loncar, M. Ibanescu, E. Smythe, F. Capasso, and J. Joannopoulos: High-Q enhancement of attractive and repulsive optical forces between coupled whispering-gallery-mode resonators. Opt. Express 13, 8286 (2005).
A. Jannasch, A. Demirörs, P. van Oostrum, A. van Blaaderen, and E. Schäffer: Nanonewton optical force trap employing anti-reflection coated, high-refractive-index titania microspheres. Nat. Photonics 6, 469 (2012).
V. Garcés-Chávez, R. Quidant, P. Reece, G. Badenes, L. Torner, and K. Dholakia: Extended organization of colloidal microparticles by surface plasmon polariton excitation. Phys. Rev. B 73, 085417 (2006).
A. Grigorenko, N. Roberts, M. Dickinson, and Y. Zhang: Nanometric optical tweezers based on nanostructured substrates. Nat. Photonics 2, 365 (2008).
M. Salary and H. Mosallaei: Tailoring optical forces for nanoparticle manipulation on layered substrates. Phys. Rev. B 94, 035410 (2016).
W. Yu, Z. Li, H. Zhou, Y. Chen, Y. Wang, Y. Huang, and X. Duan: Vertically stacked multi-heterostructures of layered materials for logic transistors and complementary inverters. Nat. Mater. 12, 246 (2012).
K. Batrakov, P. Kuzhir, S. Maksimenko, A. Paddubskaya, S. Voronovich, P. Lambin, T. Kaplas, and Y. Svirko: Flexible transparent graphene/polymer multilayers for efficient electromagnetic field absorption. Sci. Rep. 4, 7191 (2014).
S. Inampudi, M. Nazari, A. Forouzmand, and H. Mosallaei: Manipulation of surface plasmon polariton propagation on isotropic and anisotropic two-dimensional materials coupled to boron nitride heterostructures. J. Appl. Phys. 119, 025301 (2016).
B. Kemp, T. Grzegorczyk, and J. Kong: Ab initio study of the radiation pressure on dielectric and magnetic media. Opt. Express 13, 9280 (2005).
D. Efetov and P. Kim: Controlling electron-phonon interactions in graphene at ultrahigh carrier densities. Phys. Rev. Lett. 105, 256805 (2010).
ACKNOWLEDGMENT
The authors acknowledge the support of the Army Research Office (W911NF-14-0247) under the Multidisciplinary University Research Initiatives program.
Author information
Authors and Affiliations
Corresponding author
Additional information
This paper has been selected as an Invited Feature Paper.
Rights and permissions
About this article
Cite this article
Salary, M.M., Inampudi, S. & Mosallaei, H. Characterization of optomechanical modes in multilayer stack of graphene sheets. Journal of Materials Research 32, 4103–4114 (2017). https://doi.org/10.1557/jmr.2017.409
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2017.409