Skip to main content

Advertisement

Log in

CoFe2O4 nanoparticles as efficient bifunctional catalysts applied in Zn-air battery

  • Invited Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

The transition metal compound catalysts have been taken a great part in renewable energy conversion and storage systems. Herein, we report the uniform CoFe2O4 nanoparticles with abundant oxygen vacancies and specific active surface exposed through the simple hydrothermal reaction for improving the electrocatalytic performance and stability. They show good electrocatalytic performance for hydrogen evolution reaction in 0.5 M H2SO4 with an onset potential of 20 mV, the overpotential of 45 mV (at j = 10 mA/cm2), and remarkable long-term stability more than 100 h at different current densities and better oxygen reduction reaction activity with lower overpotential in 0.1 M KOH. Moreover, the home-made primary Zn-air batteries, using CoFe2O4 nanoparticles as an air-cathode display the high open-circuit voltage of 1.47 V and the maximum power density of 142 mW/cm2. The two-series-connected batteries fabricated by CoFe2O4 nanoparticles can support a light-emitting diode to work for more than 48 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4

Similar content being viewed by others

References

  1. A.S. Aricò, P. Bruce, B. Scrosati, J-M. Tarascon, and W.V. Schalkwijk: Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366 (2005).

    Google Scholar 

  2. S.S. Shinde, C-H. Lee, A. Sami, D-H. Kim, S-U. Lee, and J-H. Lee: Scalable 3-D carbon nitride sponge as an efficient metal-free bifunctional oxygen electrocatalyst for rechargeable Zn–air batteries. ACS Nano 11, 347 (2017).

    CAS  Google Scholar 

  3. J. Zhang, Z. Zhao, Z. Xia, and L. Dai: A metal-free bifunctional electrocatalyst for oxygen reduction and oxygen evolution reactions. Nat. Nanotechnol. 10, 444 (2015).

    CAS  Google Scholar 

  4. S. Zhao, H. Yin, L. Du, L. He, K. Zhao, L. Chang, G. Yin, H. Zhao, S. Liu, and Z. Tang: Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 8, 12660 (2014).

    CAS  Google Scholar 

  5. Z-Q. Liu, H. Cheng, N. Li, T.Y. Ma, and Y-Z. Su: ZnCo2O4 quantum dots anchored on nitrogen-doped carbon nanotubes as reversible oxygen reduction/evolution electrocatalysts. Adv. Mater. 28, 3777 (2016).

    CAS  Google Scholar 

  6. K. Gong, F. Du, Z. Xia, M. Durstock, and L. Dai: Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 323, 760 (2009).

    CAS  Google Scholar 

  7. L. Duan, F. Bozoglian, S. Mandal, B. Stewart, T. Privalov, A. Llobet, and L. Sun: A molecular ruthenium catalyst with water-oxidation activity comparable to that of photosystem II. Nat. Chem. 4, 418 (2012).

    CAS  Google Scholar 

  8. C. Cui, L. Gan, M. Heggen, S. Rudi, and P. Strasser: Compositional segregation in shaped Pt alloy nanoparticles and their structural behavior during electrocatalysis. Nat. Mater. 12, 765 (2013).

    CAS  Google Scholar 

  9. C. Zhang, S. Hwang, A. Trout, and Z. Peng: Solid-state chemistry-enabled scalable production of octahedral Pt–Ni alloy electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 136, 7805 (2014).

    CAS  Google Scholar 

  10. L. Dai, Y. Xue, L. Qu, H. Choi, and J. Baek: Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 115, 4823 (2015).

    CAS  Google Scholar 

  11. K. Fominykh, P. Chernev, I. Zaharieva, J. Sicklinger, G. Stefanic, M. Döblinger, A. Müller, A. Pokharel, S. Böcklein, C. Scheu, T. Bein, and D. Fattakhova-Rohlfing: Iron-doped nickel oxide nanocrystals as highly efficient electrocatalysts for alkaline water splitting. ACS Nano 9, 5180 (2015).

    CAS  Google Scholar 

  12. Q. Liu, Y. Wang, L. Dai, and J. Yao: Scalable fabrication of nanoporous carbon fiber films as bifunctional catalytic electrodes for flexible Zn-air batteries. Adv. Mater. 28, 3000 (2016).

    CAS  Google Scholar 

  13. B. Liu, C. Wu, J. Miao, and P. Yang: All inorganic semiconductor nanowire mesh for direct solar water splitting. ACS Nano 8, 11739 (2014).

    CAS  Google Scholar 

  14. J. Mefford, X. Rong, A. Abakumov, W. Hardin, S. Dai, A. Kolpak, K.P. Johnston, and J. Stevenson: Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat. Commun. 7, 11053 (2016).

    CAS  Google Scholar 

  15. P. Hiralal, S. Imaizumi, H. Unalan, H. Matsumoto, M. Minagawa, M. Rouvala, A. Tanioka, and G. Amaratunga: Nanomaterial-enhanced all-solid flexible zinc-carbon batteries. ACS Nano 4, 2730 (2009).

    Google Scholar 

  16. F. Cao, M. Zhao, Y. Yu, B. Chen, Y. Huang, J. Yang, X. Cao, Q. Lu, X. Zhang, Z. Zhang, C. Tan, and H. Zhang: Synthesis of two-dimensional CoS1.097/nitrogen-doped carbon nanocomposites using metal-organic framework nanosheets as precursors for supercapacitor application. J. Am. Chem. Soc. 138, 6924 (2016).

    CAS  Google Scholar 

  17. Y. Zhu, T. Ma, M. Jaroniec, and S. Qiao: Self-templating synthesis of hollow Co3O4 microtube arrays for highly efficient water electrolysis. Angew. Chem., Int. Ed. 56, 1324 (2017).

    CAS  Google Scholar 

  18. K. Qu, Y. Zheng, S. Dai, and S. Qiao: Graphene oxide-polydopamine derived N,S-codoped carbon nanosheets as superior bifunctional electrocatalysts for oxygen reduction and evolution. Nano Energy 19, 373 (2016).

    CAS  Google Scholar 

  19. T. Ling, D. Yan, Y. Jiao, H. Wang, Y. Zheng, X. Zheng, J. Mao, X. Du, Z. Hu, M. Jaroniec, and S. Qiao: Engineering surface atomic structure of single-crystal cobalt(II) oxide nanorods for superior electrocatalysis. Nat. Commun. 7, 12876 (2016).

    CAS  Google Scholar 

  20. T. Ma, J. Cao, M. Jaroniec, and S. Qiao: Interacting carbon nitride and titanium carbide nanosheets for high-performance oxygen evolution. Angew. Chem., Int. Ed. 55, 1138 (2016).

    CAS  Google Scholar 

  21. S. Chen, J. Duan, P. Bian, Y. Tang, R. Zheng, and S. Qiao: Three-dimensional smart catalyst electrode for oxygen evolution reaction. Adv. Energy Mater. 5, 1500936 (2015).

    Google Scholar 

  22. J. Duan, S. Chen, M. Jaroniec, and S. Qiao: Heteroatom-doped graphene-based materials for energy-relevant electrocatalytic processes. ACS Catal. 5, 5207 (2015).

    CAS  Google Scholar 

  23. H. Shi and G. Zhao: Water oxidation on spinel NiCo2O4 nanoneedles anode: Microstructures, specific surface character, and the enhanced electrocatalytic performance. J. Phys. Chem. C 118, 25939 (2014).

    CAS  Google Scholar 

  24. X. Gao, H. Zhang, Q. Li, X. Yu, Z. Hong, X. Zhang, C. Liang, and Z. Lin: Hierarchical NiCo2O4 hollow microcuboids as bifunctional electrocatalysts for overall water-splitting. Angew. Chem., Int. Ed. 55, 6290 (2016).

    CAS  Google Scholar 

  25. C. Xia, Q. Jiang, C. Zhao, M. Hedhili, and H. Alshareef: Selenide-based electrocatalysts and scaffolds for water oxidation applications. Adv. Mater. 28, 77 (2016).

    CAS  Google Scholar 

  26. V. Augustyn, P. Simon, and B. Dunn: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597 (2014).

    CAS  Google Scholar 

  27. R. Wang, J. Lang, Y. Liu, Z. Lin, and X. Yan: Ultra-small, size-controlled Ni(OH)2 nanoparticles: Elucidating the relationship between particle size and electrochemical performance for advanced energy storage devices. NPG Asia Mater. 7, e183 (2015).

    CAS  Google Scholar 

  28. Z. Yu, L. Tetard, L. Zhai, and J. Thomas: Supercapacitor electrode materials: Nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702 (2015).

    CAS  Google Scholar 

  29. Y. Zhao, K. Kamiya, K. Hashimoto, and S. Nakanishi: In situ CO2-emission assisted synthesis of molybdenum carbonitride nanomaterial as hydrogen evolution electrocatalyst. J. Am. Chem. Soc. 137, 110 (2015).

    CAS  Google Scholar 

  30. J. Yin, Q. Fan, Y. Li, F. Cheng, P. Zhou, P. Xi, and S. Sun: Ni–C–N nanosheets as catalyst for hydrogen evolution reaction. J. Am. Chem. Soc. 138, 14546 (2016).

    CAS  Google Scholar 

  31. T. Wang, Y. Guo, Z. Zhou, X. Chang, J. Zheng, and X. Li: Ni–Mo nanocatalysts on N-doped graphite nanotubes for highly efficient electrochemical hydrogen evolution in acid. ACS Nano 10, 10397 (2016).

    CAS  Google Scholar 

  32. Y. Zhong, X. Xia, F. Shi, J. Zhan, J. Tu, and H. Fan: Transition metal carbides and nitrides in energy storage and conversion. Adv. Sci. 3, 1500286 (2016).

    Google Scholar 

  33. Y. Zhang, B. Ouyang, J. Xu, S. Chen, R. Rawat, and H. Fan: 3D porous hierarchical nickel-molybdenum nitrides synthesized by RF plasma as highly active and stable hydrogen-evolution-reaction electrocatalysts. Adv. Energy Mater. 6, 1600221 (2016).

    Google Scholar 

  34. L. Huang, D. Chen, Y. Ding, S. Feng, Z. Wang, and M. Liu: Nickel–cobalt hydroxide nanosheets coated on NiCo2O4 nanowires grown on carbon fiber paper for high-performance pseudocapacitors. Nano Lett. 13, 3135 (2013).

    CAS  Google Scholar 

  35. J. Yin, P. Zhou, L. An, L. Huang, C. Shao, J. Wang, H. Liu, and P. Xi: Self-supported nanoporous NiCo2O4 nanowires with cobalt-nickel layered oxide nanosheets for overall water splitting. Nanoscale 8, 1390 (2016).

    CAS  Google Scholar 

  36. L. An, L. Huang, P. Zhou, J. Yin, H. Liu, and P. Xi: Self-standing high-performance hydrogen evolution electrode with nanostructured NiCo2O4/CuS heterostructures. Adv. Funct. Mater. 25, 6814 (2015).

    CAS  Google Scholar 

  37. K. Xu, P. Chen, X. Li, Y. Tong, H. Ding, X. Wu, W. Chu, Z. Peng, C. Wu, and Y. Xie: Metallic nickel nitride nanosheets realizing enhanced electrochemical water oxidation. J. Am. Chem. Soc. 137, 4119 (2015).

    CAS  Google Scholar 

  38. D. Bediako, B. Lassalle-Kaiser, Y. Surendranath, J. Yano, V. Yachandra, and D. Nocera: Structure-activity correlations in a nickel–borate oxygen evolution catalyst. J. Am. Chem. Soc. 134, 6801 (2012).

    CAS  Google Scholar 

  39. J. Kibsgaard, Z. Chen, B. Reinecke, and T. Jaramillo: Engineering the surface structure of MoS2 to preferentially expose active edge sites for electrocatalysis. Nat. Mater. 11, 963 (2012).

    CAS  Google Scholar 

  40. K. Nam, S. Bak, E. Hu, X. Yu, Y. Zhou, X. Wang, L. Wu, Y. Zhu, K. Chung, and X. Yang: Combining in situ synchrotron X-ray diffraction and absorption techniques with transmission electron microscopy to study the origin of thermal instability in overcharged cathode materials for lithium-ion batteries. Adv. Funct. Mater. 23, 1047 (2013).

    CAS  Google Scholar 

  41. J. Zhang, L. Qu, G. Shi, J. Liu, J. Chen, and L. Dai: N,P-codoped carbon networks as efficient metal-free bifunctional catalysts for oxygen reduction and hydrogen evolution reactions. Angew. Chem., Int. Ed. 55, 2230 (2016).

    CAS  Google Scholar 

  42. H. Jin, J. Wang, D. Su, Z. Wei, Z. Pang, and Y. Wang: In situ cobalt–cobalt oxide/N-doped carbon hybrids as superior bifunctional electrocatalysts for hydrogen and oxygen evolution. J. Am. Chem. Soc. 137, 2688 (2015).

    CAS  Google Scholar 

  43. H. Wang, S. Zhuo, Y. Liang, X. Han, and B. Zhang: General self-template synthesis of transition-metal oxide and chalcogenide mesoporous nanotubes with enhanced electrochemical performances. Angew. Chem., Int. Ed. 55, 9055 (2016).

    CAS  Google Scholar 

  44. Y. Zhang, B. Ouyang, J. Xu, G. Jia, S. Chen, R. Rawat, and H. Fan: Rapid synthesis of cobalt nitride nanowires: Highly efficient and low-cost catalysts for oxygen evolution. Angew. Chem., Int. Ed. 55, 8670 (2016).

    CAS  Google Scholar 

  45. Y. Sharma, N. Sharma, G. Rao, and B. Chowdari: Studies on spinel cobaltites, FeCo2O4 and MgCo2O4 as anodes for Li-ion batteries. Solid State Ionics 179, 587 (2008).

    CAS  Google Scholar 

  46. T. Ma, S. Dai, M. Jaroniec, and S. Qiao: Metal-organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 136, 13925 (2014).

    CAS  Google Scholar 

  47. C. McCrory, S. Jung, J. Peters, and T. Jaramillo: Benchmarking heterogeneous electrocatalysts for the oxygen evolution reaction. J. Am. Chem. Soc. 135, 16977 (2013).

    CAS  Google Scholar 

  48. P. Chen, K. Xu, Z. Fang, Y. Tong, J. Wu, X. Lu, X. Peng, H. Ding, C. Wu, and Y. Xie: Metallic Co4N porous nanowire arrays activated by surface oxidation as electrocatalysts for the oxygen evolution reaction. Angew. Chem., Int. Ed. 54, 14710 (2015).

    CAS  Google Scholar 

  49. M. Gao, X. Cao, Q. Gao, Y. Xu, Y. Zheng, J. Jiang, and S. Yu: Nitrogen-doped graphene supported CoSe2 nanobelt composite catalyst for efficient water oxidation. ACS Nano 8, 3970 (2014).

    CAS  Google Scholar 

  50. M. Gao, W. Sheng, Z. Zhuang, Q. Fang, S. Gu, J. Jiang, and Y. Yan: Efficient water oxidation using nanostructured α-nickel-hydroxide as an electrocatalyst. J. Am. Chem. Soc. 136, 7077 (2014).

    CAS  Google Scholar 

  51. M. Gong, Y. Li, H. Wang, Y. Liang, J. Wu, J. Zhou, J. Wang, T. Regier, F. Wei, and H. Dai: An advanced Ni–Fe layered double hydroxide electrocatalyst for water oxidation. J. Am. Chem. Soc. 135, 8452 (2013).

    CAS  Google Scholar 

  52. J. Bao, X. Zhang, B. Fan, J. Zhang, M. Zhou, W. Yang, X. Hu, H. Wang, B. Pan, and Y. Xie: Ultrathin spinel-structured nanosheets rich in oxygen deficiencies for enhanced electrocatalytic water oxidation. Angew. Chem., Int. Ed. 54, 7399 (2015).

    CAS  Google Scholar 

  53. F. Lei, Y. Sun, K. Liu, S. Gao, L. Liang, B. Pan, and Y. Xie: Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J. Am. Chem. Soc. 136, 6826 (2014).

    CAS  Google Scholar 

  54. G. Nam, J. Park, M. Choi, P. Oh, S. Park, M. Kim, N. Park, J. Cho, and J. Lee: Carbon-coated core–shell Fe–Cu nanoparticles as highly active and durable electrocatalysts for a Zn–air battery. ACS Nano 9, 6493 (2015).

    CAS  Google Scholar 

  55. F. Meng, H. Zhong, D. Bao, J. Yan, and X. Zhang: In situ coupling of strung Co4N and intertwined N–C fibers toward free-standing bifunctional cathode for robust, efficient, and flexible Zn–air batteries. J. Am. Chem. Soc. 138, 10226 (2016).

    CAS  Google Scholar 

  56. J. Park, M. Park, G. Nam, J. Lee, and J. Cho: All-solid-state cable-type flexible zinc–air battery. Adv. Mater. 27, 1396 (2015).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the support from the National Natural Science Foundation of China (No. 21571089) and the Fundamental Research Funds for the Central Universities (lzujbky-2016-k02, lzujbky-2016-k09, lzujbky-2016-38).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pinxian Xi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yin, J., Shen, L., Li, Y. et al. CoFe2O4 nanoparticles as efficient bifunctional catalysts applied in Zn-air battery. Journal of Materials Research 33, 590–600 (2018). https://doi.org/10.1557/jmr.2017.404

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.404

Navigation