Skip to main content
Log in

Activation of PVDF membranes through facile hydroxylation of the polymeric dope

  • Invited Feature Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

A method comprising a two-step alkali/acid treatment of poly (vinylidene fluoride) (PVDF) polymer is developed for the fabrication of flat-sheet PVDF membranes functionalized with labile hydroxyl groups. This method involves the application of a short-duration modification in alkali medium (5% KOH). Extensive characterizations were performed on the prepared membranes. Modification of the polymer altered the crystallinity of the PVDF from a mixture of both α and β phases to a predominant β phase. Lower work of adhesion of the modified membrane indicated the formation of a more hydrophobic and wetting-resistant membrane surface. Centrifugation of the polymer dope after the modification had a pronounced impact on the properties of the resultant membranes. This protocol could be utilized in fine-tuning the properties of PVDF membranes for various target-specific applications such as membrane distillation. This method can also be used in functionalizing PVDF membranes further by exploiting the labile–OH group present on the membrane surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, and K. Li: Progress in the production and modification of PVDF membranes. J. Membr. Sci. 375 (1–2), 1 (2011).

    Article  CAS  Google Scholar 

  2. J. Gao, J. Yu, and C. Li: Chemical modification of polyvinylidene fluoride (PVDF) membrane and its application to milk purification. Int. J. Nonlinear Sci. Numer. Simul. 11 (1), 37 (2011).

    Google Scholar 

  3. B.S. Lalia, E. Guillen-Burrieza, H.A. Arafat, and R. Hashaikeh: Fabrication and characterization of polyvinylidenefluoride-co-hexafluoropropylene (PVDF-HFP) electrospun membranes for direct contact membrane distillation. J. Membr. Sci. 428 (Suppl. C), 104 (2013).

    Article  CAS  Google Scholar 

  4. R.E. Sousa, M. Kundu, A. Gören, M.M. Silva, L. Liu, C.M. Costa, and S. Lanceros-Mendez: Poly(vinylidene fluoride-co-chlorotrifluoroethylene) (PVDF-CTFE) lithium-ion battery separator membranes prepared by phase inversion. RSC Adv. 5 (110), 90428 (2015).

    Article  CAS  Google Scholar 

  5. R. Thomas, E. Guillen-Burrieza, and H.A. Arafat: Pore structure control of PVDF membranes using a 2-stage coagulation bath phase inversion process for application in membrane distillation (MD). J. Membr. Sci. 452, 470 (2014).

    Article  CAS  Google Scholar 

  6. M.O. Mavukkandy, M.R. Bilad, J. Kujawa, S. Al-Gharabli, and H.A. Arafat: On the effect of fumed silica particles on the structure, properties and application of PVDF membranes. Sep. Purif. Technol. 187, 365 (2017).

    Article  CAS  Google Scholar 

  7. M.O. Mavukkandy, M.R. Bilad, A. Giwa, S.W. Hasan, and H.A. Arafat: Leaching of PVP from PVDF/PVP blend membranes: Impacts on membrane structure and fouling in membrane bioreactors. J. Mater. Sci. 51 (9), 4328 (2016).

    Article  CAS  Google Scholar 

  8. M-X. Hu, J-N. Li, S-L. Zhang, L. Li, and Z-K. Xu: Hydrophilic modification of PVDF microfiltration membranes by adsorption of facial amphiphile cholic acid. Colloids Surf., B 123, 809 (2014).

    Article  CAS  Google Scholar 

  9. J.K. Wang, G.M. Xiong, B. Luo, C.C. Choo, S. Yuan, N.S. Tan, and C. Choong: Surface modification of PVDF using non-mammalian sources of collagen for enhancement of endothelial cell functionality. J. Mater. Sci.: Mater. Med. 27 (3), 45 (2016).

    Google Scholar 

  10. A. Mika: Chemical valves based on poly(4-vinylpyridine)-filled microporous membranes. J. Membr. Sci. 153 (1), 45 (1999).

    Article  CAS  Google Scholar 

  11. Y-F. Lin, C-S. Wang, C-C. Ko, C-H. Chen, K-S. Chang, K-L. Tung, and K-R. Lee: Polyvinylidene fluoride/siloxane nanofibrous membranes for long-term continuous CO2-capture with large absorption-flux enhancement. ChemSusChem 7 (2), 604 (2014).

    Article  CAS  Google Scholar 

  12. A. Razmjou, E. Arifin, G. Dong, J. Mansouri, and V. Chen: Superhydrophobic modification of TiO2 nanocomposite PVDF membranes for applications in membrane distillation. J. Membr. Sci. 415–416, 850 (2012).

    Article  CAS  Google Scholar 

  13. H. Dong, K. Xiao, X. Li, Z. Wang, and S. Guo: Preparation of PVDF/Al2O3 hybrid membrane via alkaline modification and chemical coupling process. Desalin. Water Treat. 51 (19–21), 3800 (2013).

    Article  CAS  Google Scholar 

  14. E. Ahmadi Feijani, A. Tavasoli, and H. Mahdavi: Improving gas separation performance of poly(vinylidene fluoride) based mixed matrix membranes containing metal–organic frameworks by chemical modification. Ind. Eng. Chem. Res. 54 (48), 12124 (2015).

    Article  CAS  Google Scholar 

  15. S. Nishigochi, T. Ishigami, T. Maruyama, Y. Hao, Y. Ohmukai, Y. Iwasaki, and H. Matsuyama: Improvement of antifouling properties of polyvinylidene fluoride hollow fiber membranes by simple dip coating of phosphorylcholine copolymer via hydrophobic interactions. Ind. Eng. Chem. Res. 53 (6), 2491 (2014).

    Article  CAS  Google Scholar 

  16. D. Mangindaan, I. Yared, H. Kurniawan, J-R. Sheu, and M-J. Wang: Modulation of biocompatibility on poly(vinylidene fluoride) and polysulfone by oxygen plasma treatment and dopamine coating. J. Biomed. Mater. Res., Part A 100 (11), 3177 (2012).

    Article  CAS  Google Scholar 

  17. D.M. Brewis, I. Mathieson, I. Sutherland, R.A. Cayless, and R.H. Dahm: Pretreatment of poly(vinyl fluoride) and poly(vinylidene fluoride) with potassium hydroxide. Int. J. Adhes. Adhes. 16 (2), 87 (1996).

    Article  CAS  Google Scholar 

  18. J.E. Efome, M. Baghbanzadeh, D. Rana, T. Matsuura, and C.Q. Lan: Effects of superhydrophobic SiO2 nanoparticles on the performance of PVDF flat sheet membranes for vacuum membrane distillation. Desalination 373, 47 (2015).

    Article  CAS  Google Scholar 

  19. E.E. Abdel-Hady, M.M. El-Toony, and M.O. Abdel-Hamed: Grafting of glycidyl methacrylate/styrene onto polyvinyldine fluoride membranes for proton exchange fuel cell. Electrochim. Acta 103, 32 (2013).

    Article  CAS  Google Scholar 

  20. L. Li, B. Deng, Y. Ji, Y. Yu, L. Xie, J. Li, and X. Lu: A novel approach to prepare proton exchange membranes from fluoropolymer powder by pre-irradiation induced graft polymerization. J. Membr. Sci. 346 (1), 113 (2010).

    Article  CAS  Google Scholar 

  21. F. Liu, B-K. Zhu, and Y-Y. Xu: Improving the hydrophilicity of poly(vinylidene fluoride) porous membranes by electron beam initiated surface grafting of AA/SSS binary monomers. Appl. Surf. Sci. 253 (4), 2096 (2006).

    Article  CAS  Google Scholar 

  22. A. Arslantas, D. Sinirlioglu, F. Eren, A.E. Muftuoglu, and A. Bozkurt: An investigation of proton conductivity of PVDF based 5-aminotetrazole functional polymer electrolyte membranes (PEMs) prepared via direct surface-initiated AGET ATRP of glycidyl methacrylate (GMA). J. Polym. Res. 21 (5), 437 (2014).

    Article  CAS  Google Scholar 

  23. J-Q. Meng, C-L. Chen, L-P. Huang, Q-Y. Du, and Y-F. Zhang: Surface modification of PVDF membrane via AGET ATRP directly from the membrane surface. Appl. Surf. Sci. 257 (14), 6282 (2011).

    Article  CAS  Google Scholar 

  24. W. Sun, J. Liu, H. Chu, and B. Dong: Pretreatment and membrane hydrophilic modification to reduce membrane fouling. Membranes 3 (3), 226 (2013).

    Article  CAS  Google Scholar 

  25. I. Mathieson, D.M. Brewis, I. Sutherland, and R.A. Cayless: Pretreatments of fluoropolymers. J. Adhes. 46 (1–4), 49 (1994).

    Article  CAS  Google Scholar 

  26. H. Kise and H. Ogata: Phase transfer catalysis in dehydrofluorination of poly(vinylidene fluoride) by aqueous sodium hydroxide solutions. J. Polym. Sci., Polym. Chem. Ed. 21 (12), 3443 (1983).

    Article  CAS  Google Scholar 

  27. D. Düputell and E. Staude: Heterogeneous modification of ultrafiltration membranes made from poly(vinylidene fluoride) and their characterization. J. Membr. Sci. 78 (1), 45 (1993).

    Article  Google Scholar 

  28. A.J. Dias and T.J. McCarthy: Dehydrofluorination of poly(vinylidene fluoride) in dimethylformamide solution: Synthesis of an operationally soluble semiconducting polymer. J. Polym. Sci., Polym. Chem. Ed. 23 (4), 1057 (1985).

    Article  CAS  Google Scholar 

  29. A.J. Dias and T.J. McCarthy: Synthesis of a two-dimensional array of organic functional groups: Surface-selective modification of poly(vinylidene fluoride). Macromolecules 17 (12), 2529 (1984).

    Article  CAS  Google Scholar 

  30. N. Awanis Hashim, Y. Liu, and K. Li: Stability of PVDF hollow fibre membranes in sodium hydroxide aqueous solution. Chem. Eng. Sci. 66 (8), 1565 (2011).

    Article  CAS  Google Scholar 

  31. M.F. Rabuni, N.M. Nik Sulaiman, M.K. Aroua, and N.A. Hashim: Effects of alkaline environments at mild conditions on the stability of PVDF membrane: An experimental study. Ind. Eng. Chem. Res. 52 (45), 15874 (2013).

    Article  CAS  Google Scholar 

  32. G.J. Ross, J.F. Watts, M.P. Hill, and P. Morrissey: Surface modification of poly(vinylidene fluoride) by alkaline treatment1. The degradation mechanism. Polymer 41 (5), 1685 (2000).

    Article  CAS  Google Scholar 

  33. G. Ross, J. Watts, M. Hill, and P. Morrissey: Surface modification of poly(vinylidene fluoride) by alkaline treatment part 2. Process modification by the use of phase transfer catalysts. Polymer 42 (2), 403 (2001).

    Article  CAS  Google Scholar 

  34. P. Nguyen-Tri, R. El Aidani, É. Leborgne, T. Pham, and T. Vu-Khanh: Chemical ageingaging of a polyester nonwoven membrane used in aerosol and drainage filter. Polym. Degrad. Stab. 101, 71 (2014).

    Article  CAS  Google Scholar 

  35. D.K. Owens and R.C. Wendt: Estimation of the surface free energy of polymers. J. Appl. Polym. Sci. 13 (8), 1741 (1969).

    Article  CAS  Google Scholar 

  36. H. Fox and W. Zisman: The spreading of liquids on low energy surfaces. I. Polytetrafluoroethylene. J. Colloid Sci. 5 (6), 514 (1950).

    Article  CAS  Google Scholar 

  37. W.A. Zisman: Contact Angle Wettability Adhes (American Chemical Society, Washington, DC, 1964); pp. 1–51.

    Book  Google Scholar 

  38. G. Soliveri, V. Pifferi, R. Annunziata, L. Rimoldi, V. Aina, G. Cerrato, L. Falciola, G. Cappelletti, and D. Meroni: Alkylsilane–SiO2 hybrids. A concerted picture of temperature effects in vapor phase functionalization. J. Phys. Chem. C 119 (27), 15390 (2015).

    Article  CAS  Google Scholar 

  39. E. Chibowski: Surface free energy of a solid from contact angle hysteresis. Adv. Colloid Interface Sci. 103 (2), 149 (2003).

    Article  CAS  Google Scholar 

  40. E. Chibowski, M. Jurak, L. Holysz, and A. Szczes: Wetting properties of model biological membranes. Curr. Opin. Colloid Interface Sci. 19 (4), 368 (2014).

    Article  CAS  Google Scholar 

  41. H. Zhu, Z. Guo, and W. Liu: Adhesion behaviors on superhydrophobic surfaces. Chem. Commun. 50 (30), 3900 (2014).

    Article  CAS  Google Scholar 

  42. G. Heydari, E. Thormann, M. Järn, E. Tyrode, and P.M. Claesson: Hydrophobic surfaces: Topography effects on wetting by supercooled water and freezing delay. J. Phys. Chem. C 117 (42), 21752 (2013).

    Article  CAS  Google Scholar 

  43. J. Kujawa, S. Cerneaux, S. Koter, and W. Kujawski: Highly efficient hydrophobic titania ceramic membranes for water desalination. ACS Appl. Mater. Interfaces 6 (16), 14223 (2014).

    Article  CAS  Google Scholar 

  44. Z. Zheng, Z. Gu, R. Huo, and Z. Luo: Fabrication of self-cleaning poly(vinylidene fluoride) membrane with micro/nanoscaled two-tier roughness. J. Appl. Polym. Sci. 122 (2), 1268 (2011).

    Article  CAS  Google Scholar 

  45. J. Kujawa, S. Cerneaux, W. Kujawski, M. Bryjak, and J. Kujawski: How to functionalize ceramics by perfluoroalkylsilanes for membrane separation process? Properties and application of hydrophobized ceramic membranes. ACS Appl. Mater. Interfaces 8 (11), 7564 (2016).

    Article  CAS  Google Scholar 

  46. D. Rana and T. Matsuura: Surface modifications for antifouling membranes. Chem. Rev. 110 (4), 2448 (2010).

    Article  CAS  Google Scholar 

  47. E. Ozkazanc and H.Y. Guney: The variation of the dielectric constant and loss index with temperature and draw ratio in α-PVDF. J. Appl. Polym. Sci. 112 (4), 2482 (2009).

    Article  CAS  Google Scholar 

  48. J. Liu, X. Lu, and C. Wu: Effect of preparation methods on crystallization behavior and tensile strength of poly(vinylidene fluoride) membranes. Membranes 3 (4), 389 (2013).

    Article  CAS  Google Scholar 

  49. S.J. Shilton, K.A. Prokhorov, S.A. Gordeyev, G.Y. Nikolaeva, I.R. Dunkin, W.E. Smith, and P.P. Pashinin: Raman spectroscopic evaluation of molecular orientation in polysulfone. Laser Phys. Lett. 1 (7), 336 (2004).

    Article  CAS  Google Scholar 

  50. J.L. Koenig: Infrared and Raman Spectroscopy of Polymers (Smithers Rapra Publishing, Shrewsbury, United Kingdom, 2001).

    Google Scholar 

  51. L. Nasdala, A. Beran, E. Libowitzky, and D. Wolf: The incorporation of hydroxyl groups and molecular water in natural zircon (ZrSiO4). Am. J. Sci. 301 (10), 831 (2001).

    Article  CAS  Google Scholar 

  52. Y. Xiu, L. Zhu, D.W. Hess, and C.P. Wong: Relationship between work of adhesion and contact angle hysteresis on superhydrophobic surfaces. J. Phys. Chem. C 112 (30), 11403 (2008).

    Article  CAS  Google Scholar 

  53. V. Bertola: Effect of polymer additives on the apparent dynamic contact angle of impacting drops. Colloids Surf., A 363 (1–3), 135 (2010).

    Article  CAS  Google Scholar 

  54. J. Kujawa, A. Rozicka, S. Cerneaux, and W. Kujawski: The influence of surface modification on the physicochemical properties of ceramic membranes. Colloids Surf., A 443, 567 (2014).

    Article  CAS  Google Scholar 

  55. R. Walsh: Bond dissociation energy values in silicon-containing compounds and some of their implications. Acc. Chem. Res. 14 (8), 246 (1981).

    Article  CAS  Google Scholar 

  56. B. Bhushan, M. Cichomski, E. Hoque, J.A. DeRose, P. Hoffmann, and H.J. Mathieu: Nanotribological characterization of perfluoroalkylphosphonate self-assembled monolayers deposited on aluminum-coated silicon substrates. Microsyst. Technol. 12 (6), 588 (2006).

    Article  CAS  Google Scholar 

  57. J. Kujawa and W. Kujawski: Functionalization of ceramic metal oxide powders and ceramic membranes by perfluoroalkylsilanes and alkylsilanes possessing different reactive groups: Physicochemical and tribological properties. ACS Appl. Mater. Interfaces 8 (11), 7509 (2016).

    Article  CAS  Google Scholar 

  58. Y. Sui, Z. Wang, and C. Gao: A new synthetical process of PVDF derivatives via atom transfer radical graft polymerizations and its application in fabrication of antifouling and antibacterial PVDF ultrafiltration membranes. Desalin. Water Treat. 52 (34–36), 6377 (2014).

    Article  CAS  Google Scholar 

  59. Y. Shen and A.C. Lua: Preparation and characterization of mixed matrix membranes based on PVDF and three inorganic fillers (fumed nonporous silica, zeolite 4A and mesoporous MCM-41) for gas separation. Chem. Eng. J. 192, 201 (2012).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge King Abdullah University of Science and Technology (KAUST), Saudi Arabia, for hosting the second author (Musthafa O. Mavukkandy) during the initial stage of his work in this study. The author Musthafa is also thankful to Dr. N.M. Srivatsa Bettahalli for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hassan A. Arafat.

Additional information

This paper has been selected as an Invited Feature Paper.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Al-Gharabli, S., Mavukkandy, M.O., Kujawa, J. et al. Activation of PVDF membranes through facile hydroxylation of the polymeric dope. Journal of Materials Research 32, 4219–4231 (2017). https://doi.org/10.1557/jmr.2017.403

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.403

Navigation