Skip to main content

Advertisement

Log in

One-pot synthesis of in situ carbon-decorated Cu3P particles with enhanced electrocatalytic hydrogen evolution performance

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Developing highly efficient and low-cost electrocatalysts with robust stability for hydrogen evolution reaction (HER) is a significant but challenging work for energy conversion and storage in recent years. In the present work, in situ carbon-decorated Cu3P particles (Cu3P@C) were facially synthesized by a one-pot rapid reaction with the precursors of copper acetylacetonate [Cu(acac)2] and triphenylphosphine (PPh3) at 425 °C for 1 h via a vacuum encapsulation technique. Compared with pure Cu3P particles, the Cu3P@C hybrid catalyst exhibits an enhanced electrocatalytic water-splitting performance for hydrogen evolution with excellent stability. The investigation shows that the hybridization with carbon efficiently facilities the charge transport for the electrochemical reaction. Such results of our study make the present Cu3P@C-based hybrid a promising catalyst for practical applications toward energy conversion and pave way for designing and fast fabricating in situ carbon-decorated HER catalysts from the organometallic precursors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6

Similar content being viewed by others

References

  1. J. Chow, R.J. Kopp, and P.R. Portney: Energy resources and global development. Science 302, 1528 (2003).

    Google Scholar 

  2. W. Zhang, W.Z. Lai, and R. Cao: Energy-related small molecule activation reactions: Oxygen reduction and hydrogen and oxygen evolution reactions catalyzed by porphyrin- and corrole-based systems. Chem. Rev. 111, 3717 (2017).

    Google Scholar 

  3. X. Li, J.G. Yu, J.X. Low, Y.P. Fang, J. Xiao, and X.B. Chen: Engineering heterogeneous semiconductors for solar water splitting. J. Mater. Chem. A 3, 2485 (2015).

    CAS  Google Scholar 

  4. X.Z. Wang, H. Zhou, P. Li, and W.M. Shu: Vertically aligned carbon nanotube-based electrodes for hydrogen production by water electrolysis. J. Mater. Res. 28, 927 (2013).

    CAS  Google Scholar 

  5. M. Blouin, D. Guay, J. Huot, and R. Schulz: High energy ball-milled Ti2RuFe electrocatalyst for hydrogen evolution in the chlorate industry. J. Mater. Res. 12, 1492 (1997).

    CAS  Google Scholar 

  6. J.H. Wang, W. Cui, Q. Liu, Z.C. Xing, A.M. Asiri, and X.P. Sun: Recent progress in cobalt-based heterogeneous catalysts for electrochemical water splitting. Adv. Mater. 28, 215 (2016).

    CAS  Google Scholar 

  7. Y.M. Shi and B. Zhang: Recent advances in transition metal phosphide nanomaterials: Synthesis and applications in hydrogen evolution reaction. Chem. Soc. Rev. 45, 1529 (2016).

    CAS  Google Scholar 

  8. Y.Z. Han, H.Y. Fang, H.Z. Jing, H.L. Sun, H.T. Lei, W.Z. Lai, and R. Cao: Singly versus doubly reduced nickel porphyrins for proton reduction: Experimental and theoretical evidence for a homolytic hydrogen-evolution reaction. Angew. Chem., Int. Ed. 55, 5457 (2016).

    CAS  Google Scholar 

  9. J.R. McKone, E.L. Warren, M.J. Bierman, S.W. Boettcher, B.S. Brunschwig, N.S. Lewis, and H.B. Gray: Evaluation of Pt, Ni, and Ni–Mo electrocatalysts for hydrogen evolution on crystalline Si electrodes. Energy Environ. Sci. 4, 3573 (2011).

    CAS  Google Scholar 

  10. S.C. Lin, Y.F. Chiu, P.W. Wu, Y.F. Hsieh, and C.Y. Wu: Templated fabrication of nanostructured Ni brush for hydrogen evolution reaction. J. Mater. Res. 25, 2001 (2010).

    CAS  Google Scholar 

  11. L.L. Fan, P.F. Liu, X.C. Yan, L. Gu, Z.Z. Yang, H.G. Yang, S.L. Qiu, and X.D. Yao: Atomically isolated nickel species anchored on graphitized carbon for efficient hydrogen evolution electrocatalysis. Nat. Commun. 7, 10667 (2016).

    CAS  Google Scholar 

  12. B.R. Liu, L. Zhang, W.L. Xiong, and M.M. Ma: Cobalt-nanocrystal-assembled hollow nanoparticles for electrocatalytic hydrogen generation from neutral-pH water. Angew. Chem., Int. Ed. 55, 6725 (2016).

    CAS  Google Scholar 

  13. Q. Lu, G.S. Hutchings, W.T. Yu, Y. Zhou, R.V. Forest, R.Z. Tao, J. Rosen, B.T. Yonemoto, Z.Y. Cao, H.M. Zheng, J.Q. Xiao, F. Jiao, and J.G. Chen: Highly porous non-precious bimetallic electrocatalysts for efficient hydrogen evolution. Nat. Commun. 6, 6567 (2015).

    CAS  Google Scholar 

  14. X. Zhang, H.M. Xu, X.X. Li, Y.Y. Li, T.B. Yang, and Y.Y. Liang: Facile synthesis of nickel-iron/nanocarbon hybrids as advanced electrocatalysts for efficient water splitting. ACS Catal. 6, 580 (2016).

    CAS  Google Scholar 

  15. H.B. Zhang, Z.J. Ma, J.J. Duan, H.M. Liu, G.G. Liu, T. Wang, K. Chang, M. Li, L. Shi, X.G. Meng, K.C. Wu, and J.H. Ye: Active sites implanted carbon cages in core–shell architecture: Highly active and durable electrocatalyst for hydrogen evolution reaction. ACS Nano 10, 684 (2016).

    CAS  Google Scholar 

  16. M. Zeng, Y.L. Liu, F.P. Zhao, K.Q. Nie, N. Han, X.X. Wang, W.J. Huang, X.N. Song, J. Zhong, and Y.G. Li: Metallic cobalt nanoparticles encapsulated in nitrogen-enriched graphene shells: Its bifunctional electrocatalysis and application in zinc-air batteries. Adv. Funct. Mater. 26, 4397 (2016).

    CAS  Google Scholar 

  17. J.S. Li, Y. Wang, C.H. Liu, S.L. Li, Y.G. Wang, L.Z. Dong, Z.H. Dai, Y.F. Li, and Y.Q. Lan: Coupled molybdenum carbide and reduced graphene oxide electrocatalysts for efficient hydrogen evolution. Nat. Commun. 7, 11204 (2016).

    CAS  Google Scholar 

  18. X.J. Yang, X.J. Feng, H.Q. Tan, H.Y. Zang, X.L. Wang, Y.H. Wang, E.B. Wang, and Y.G. Li: N-doped graphene-coated molybdenum carbide nanoparticles as highly efficient electrocatalysts for the hydrogen evolution reaction. J. Mater. Chem. A 4, 3947 (2016).

    CAS  Google Scholar 

  19. Q.F. Gong, Y. Wang, Q. Hu, J.G. Zhou, R.F. Feng, P.N. Duchesne, P. Zhang, F.J. Chen, N. Han, Y.F. Li, C.H. Jin, Y.G. Li, and S.T. Lee: Ultrasmall and phase-pure W2C nanoparticles for efficient electrocatalytic and photoelectrochemical hydrogen evolution. Nat. Commun. 7, 13216 (2016).

    CAS  Google Scholar 

  20. K. Chang, X. Hai, H. Pang, H.B. Zhang, L. Shi, G.G. Liu, H.M. Liu, G.X. Zhao, M. Li, and J.H. Ye: Targeted synthesis of 2H- and 1T-phase MoS2 monolayers for catalytic hydrogen evolution. Adv. Mater. 28, 10033 (2016).

    CAS  Google Scholar 

  21. J. Deng, H.B. Li, J.P. Xiao, Y.C. Tu, D.H. Deng, H.X. Yang, H.F. Tian, J. Li, P.J. Ren, and X.H. Bao: Triggering the electrocatalytic hydrogen evolution activity of the inert two-dimensional MoS2 surface via single-atom metal doping. Energy Environ. Sci. 8, 1594 (2015).

    CAS  Google Scholar 

  22. P.D. Tran, S.Y. Chiam, P.P. Boix, Y. Ren, S.S. Pramana, J. Fize, V. Artero, and J. Barber: Novel cobalt/nickel–tungsten-sulfide catalysts for electrocatalytic hydrogen generation from water. Energy Environ. Sci. 6, 2452 (2013).

    CAS  Google Scholar 

  23. P.D. Tran, T.V. Tran, M. Orio, S. Torelli, Q.D. Truong, K. Nayuki, Y. Sasaki, S.Y. Chiam, R. Yi, I. Honma, J. Barber, and V. Artero: Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide. Nat. Mater. 15, 640 (2016).

    CAS  Google Scholar 

  24. X.Y. Yu, Y. Feng, Y. Jeon, B.Y. Guan, and X.W. Lou: Formation of Ni–Co–MoS2 nanoboxes with enhanced electrocatalytic activity for hydrogen evolution. Adv. Mater. 28, 9006 (2016).

    CAS  Google Scholar 

  25. H.J. Yan, C.G. Tian, L. Wang, A.P. Wu, M.C. Meng, L. Zhao, and H.G. Fu: Phosphorus-modified tungsten nitride/reduced graphene oxide as a high-performance, non-noble-metal electrocatalyst for the hydrogen evolution reaction. Angew. Chem., Int. Ed. 54, 6325 (2015).

    CAS  Google Scholar 

  26. M.X. Chen, J. Qi, D.Y. Guo, H.T. Lei, W. Zhang, and R. Cao: Facile synthesis of sponge-like Ni3N/NC for electrocatalytic water oxidation. Chem. Commun. 53, 9566 (2017).

    CAS  Google Scholar 

  27. Y. Zhang, Y. Xie, Y.T. Zhou, X.W. Wang, and K. Pan: Well dispersed Fe2N nanoparticles on surface of nitrogen-doped reduced graphite oxide for highly efficient electrochemical hydrogen evolution. J. Mater. Res. 32, 1770 (2017).

    CAS  Google Scholar 

  28. X.D. Yan, L.H. Tian, M. He, and X.B. Chen: Three-dimensional crystalline/amorphous Co/Co3O4 core/shell nanosheets as efficient electrocatalysts for the hydrogen evolution reaction. Nano Lett. 15, 6015 (2015).

    CAS  Google Scholar 

  29. Y.H. Li, P.F. Liu, L.F. Pan, H.F. Wang, Z.Z. Yang, L.R. Zheng, P. Hu, H.J. Zhao, L. Gu, and H.G. Yang: Local atomic structure modulations activate metal oxide as electrocatalyst for hydrogen evolution in acidic water. Nat. Commun. 6, 8064 (2015).

    CAS  Google Scholar 

  30. R. Wu, J.F. Zhang, Y.M. Shi, D.L. Liu, and B. Zhang: Metallic WO2–carbon mesoporous nanowires as highly efficient electrocatalysts for hydrogen evolution reaction. J. Am. Chem. Soc. 137, 6983 (2015).

    CAS  Google Scholar 

  31. J. Masa, P. Weide, D. Peerers, I. Sinev, W. Xia, Z.Y. Sun, C. Somsen, M. Muhler, and W. Schuhmann: Amorphous cobalt boride (Co2B) as a highly efficient nonprecious catalyst for electrochemical water splitting: Oxygen and hydrogen evolution. Adv. Energy Mater. 6, 1502313 (2016).

    Google Scholar 

  32. M.Y. Pi, T.L. Wu, D.K. Zhang, S.J. Chen, and S.X. Wang: Facile preparation of semimetallic WP2 as a novel photocatalyst with high photoactivity. RSC Adv. 6, 15724 (2016).

    CAS  Google Scholar 

  33. L.H. Tian, X.D. Yan, X.J. Chen, L. Liu, and X.B. Chen: One-pot, large-scale, simple synthesis of CoxP nanocatalysts for electrochemical hydrogen evolution. J. Mater. Chem. A 4, 13011 (2016).

    CAS  Google Scholar 

  34. X.D. Wang, Y.F. Xu, H.S. Rao, W.J. Xu, H.Y. Chen, W.X. Zhang, D.B. Kuang, and C.Y. Su: Novel porous molybdenum tungsten phosphide hybrid nanosheets on carbon cloth for efficient hydrogen evolution. Energy Environ. Sci. 9, 1468 (2016).

    CAS  Google Scholar 

  35. L.H. Tian, X.D. Yan, and X.B. Chen: Electrochemical activity of iron phosphide nanoparticles in hydrogen evolution reaction. ACS Catal. 6, 5441 (2016).

    CAS  Google Scholar 

  36. D. Zhou, L.B. He, W.X. Zhu, X.D. Hou, K.Y. Wang, G. Du, C.B. Zheng, X.P. Sun, and A.M. Asirid: Interconnected urchin-like cobalt phosphide microspheres film for highly efficient electrochemical hydrogen evolution in both acidic and basic media. J. Mater. Chem. A 4, 10114 (2016).

    CAS  Google Scholar 

  37. A.B. Laursen, K.R. Patraju, M.J. Whitaker, M. Retuerto, T. Sarkar, N. Yao, K.V. Ramanujachary, M. Greenblatt, and G.C. Dismukes: Nanocrystalline Ni5P4: A hydrogen evolution electrocatalyst of exceptional efficiency in both alkaline and acidic media. Energy Environ. Sci. 8, 1027 (2015).

    CAS  Google Scholar 

  38. A. Han, H.Y. Zhang, R.H. Yuan, H.X. Ji, and P.W. Du: Crystalline copper phosphide nanosheets as an efficient Janus catalyst for overall water splitting. ACS Appl. Mater. Interfaces 9, 2240 (2017).

    CAS  Google Scholar 

  39. S.B. Ni, J.J. Ma, X.H. Lv, X.L. Yang, and L.L. Zhang: The fine electrochemical performance of porous Cu3P/Cu and the high energy density of Cu3P as anode for Li-ion batteries. J. Mater. Chem. 2, 20506 (2014).

    CAS  Google Scholar 

  40. A.J. Zhou, B. Yang, W.H. Wang, X.Y. Dai, M.J. Zhao, J. Xue, M.G. Han, C. Fan, and J.Z. Li: Enhanced reversibility and electrochemical performances of mechanically alloyed Cu3P achieved by Fe addition. RSC Adv. 6, 26800 (2016).

    CAS  Google Scholar 

  41. J.Q. Tian, Q. Liu, N.Y. Cheng, A.M. Asiri, and X.P. Sun: Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem., Int. Ed. 53, 9577 (2014).

    CAS  Google Scholar 

  42. L.B. Ma, X.P. Shen, H. Zhou, J. Zhu, C.Y. Xi, Z.Y. Ji, and L.R. Kong: Synthesis of Cu3P nanocubes and their excellent electrocatalytic efficiency for the hydrogen evolution reaction in acidic solution. RSC Adv. 6, 9672 (2016).

    CAS  Google Scholar 

  43. C.C. Hou, Q.Q. Chen, C.J. Wang, F. Liang, Z.H. Lin, W.F. Fu, and Y. Chen: Self-supported cedarlike semimetallic Cu3P nanoarrays as a 3D high-performance Janus electrode for both oxygen and hydrogen evolution under basic conditions. ACS Appl. Mater. Interfaces 8, 23037 (2016).

    CAS  Google Scholar 

  44. Z. Xing, Q. Liu, A.M. Asiri, and X.P. Sun: Closely interconnected network of molybdenum phosphide nanoparticles: A highly efficient electrocatalyst for generating hydrogen from water. Adv. Mater. 26, 5702 (2014).

    CAS  Google Scholar 

  45. M.Y. Pi, T.L. Wu, D.K. Zhang, S.J. Chen, and S.X. Wang: Self-supported three-dimensional mesoporous semimetallic WP2 nanowire arrays on carbon cloth as a flexible cathode for efficient hydrogen evolution. Nanoscale 8, 19779 (2016).

    CAS  Google Scholar 

  46. Q. Liu, S. Gu, and C.M. Li: Electrodeposition of nickel–phosphorus nanoparticles film as a Janus electrocatalyst for electro-splitting of water. J. Power Sources 299, 342 (2015).

    CAS  Google Scholar 

  47. W.M. Zhang, X.L. Wu, J.S. Hu, Y.G. Guo, and L.J. Wan: Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries. Adv. Funct. Mater. 18, 3941 (2008).

    CAS  Google Scholar 

  48. L. Wang, J. Liang, Y. Zhu, T. Mei, X. Zhang, Q. Yang, and Y. Qian: Synthesis of Fe3O4@C core–shell nanorings and their enhanced electrochemical performance for lithium-ion batteries. Nanoscale 53, 627 (2013).

    Google Scholar 

  49. S. Gao, Y.P. Liu, G.D. Li, Y.C. Guo, Y.C. Zou, and X.X. Zou: General urea-assisted synthesis of carbon-coated metal phosphide nanoparticles for efficient hydrogen evolution electrocatalysis. Electrochim. Acta 199, 99 (2016).

    CAS  Google Scholar 

  50. J. Jiang, C.D. Wang, W. Li, and Q. Yang: One-pot synthesis of carbon-coated Ni5P4 nanoparticles and CoP nanorods for high-rate and high-stability lithium-ion batteries. J. Mater. Chem. A 3, 23345 (2015).

    CAS  Google Scholar 

  51. C. Lee, X. Wei, J.W. Kysar, and J. Hone: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).

    CAS  Google Scholar 

  52. A.D. Wilson, R.K. Shoemaker, A. Miedaner, J.T. Muckerman, D.L. Dubois, and M.R. Dubois: Nature of hydrogen interactions with Ni(II) complexes containing cyclic phosphine ligands with pendant nitrogen bases. Proc. Natl. Acad. Sci. U. S. A. 104, 6951 (2007).

    CAS  Google Scholar 

  53. H.L. Sun, Y.Z. Han, H.T. Lei, M.X. Chen, and R. Cao: Cobalt corroles with phosphonic acid pendants as catalysts for oxygen and hydrogen evolution from neutral aqueous solution. Chem. Commun. 53, 6195 (2017).

    CAS  Google Scholar 

  54. M.Y. Pi, T.L. Wu, D.K. Zhang, S.J. Chen, and S.X. Wang: Phase-controlled synthesis and comparative study of α- and β-WP2 submicron particles as efficient electrocatalysts for hydrogen evolution. Electrochim. Acta 216, 304 (2016).

    CAS  Google Scholar 

  55. M.Y. Pi, T.L. Wu, W.M. Guo, X.D. Wang, D.K. Zhang, S.X. Wang, and S.J. Chen: Phase-controlled synthesis of polymorphic tungsten diphosphide with hybridization of monoclinic and orthorhombic phases as a novel electrocatalyst for efficient hydrogen evolution. J. Power Sources 349, 138 (2017).

    CAS  Google Scholar 

  56. W.X. Zhu, C. Tang, D.N. Liu, J.L. Wang, A.M. Asiric, and X.P. Sun: A self-standing nanoporous MoP2 nanosheet array: An advanced pH-universal catalytic electrode for the hydrogen evolution reaction. J. Mater. Chem. A 4, 7169 (2016).

    CAS  Google Scholar 

  57. J.F. Moulder, J. Chastain, and R.C. King: Handbook of X-ray Photoelectron Spectroscopy: A Reference Book of Standard Spectra for Identification and Interpretation of XPS Data (Perkin-Elmer, Eden Prairie, MN, 1992).

    Google Scholar 

  58. Z.H. Pu, Q. Liu, A.M. Asiri, and X.P. Sun: Tungsten phosphide nanorod arrays directly grown on carbon cloth: A highly efficient and stable hydrogen evolution cathode at all pH values. ACS Appl. Mater. Interfaces 6, 21874 (2014).

    CAS  Google Scholar 

  59. M.X. Chen, J. Qi, W. Zhang, and R. Cao: Electrosynthesis of NiPx nanospheres for electrocatalytic hydrogen evolution from a neutral aqueous solution. Chem. Commun. 53, 5507 (2017).

    CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

This work is supported by the National Natural Science Foundation of China (Grant No. 51672031). The authors also acknowledge the support from the sharing fund of large-scale equipment of the Chongqing University (106112017CDJQJ308820).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shijian Chen.

Supplementary Material

43578_2018_33050546_MOESM1_ESM.docx

Supplementary Material: One-pot synthesis of in situ carbon decorated Cu3P particleswith enhanced electrocatalytichydrogen evolution performance (approximately 1.01 MB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pi, M., Yang, T., Wang, S. et al. One-pot synthesis of in situ carbon-decorated Cu3P particles with enhanced electrocatalytic hydrogen evolution performance. Journal of Materials Research 33, 546–555 (2018). https://doi.org/10.1557/jmr.2017.401

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.401

Navigation