Skip to main content
Log in

Molecular dynamics simulations of surface oxidation and of surface slip irreversibility under fatigue in oxygen environment

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Atomistic simulations are carried out to analyze the influence of oxygen environment on nickel and copper surface roughness and notch initiation. The early stages of oxidation of nickel and copper surfaces are first simulated and compared with experimental observations. Various oxygen superstructures observed on metal surfaces are reproduced as well as the nucleation of small NiO embryos. Nickel and copper surface oxidation mechanisms are different and different “oxide” nano layers are formed. None of these superficial nano layers has a major influence on the mechanical behavior of surface slips as they do not change the surface roughness fatigue evolution and micro-notch production. These atomistic results agree with experimental studies which report similar development of persistent slip band surface relief in inert and in air environment. A general model for the estimation of surface slip irreversibility is also provided and the models of environment-assisted surface relief evolution and microcrack initiation are revisited.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8
FIG. 9

Similar content being viewed by others

References

  1. P.J. Woods: Low-amplitude fatigue of copper and copper–5 at.% aluminium single crystals. Philos. Mag. 28, 155 (1973).

    Article  CAS  Google Scholar 

  2. K. Differt, U. Esmann, and H. Mughrabi: A model of extrusions and intrusions in fatigued metals II. Surface roughening by random irreversible slip. Philos. Mag. A 54, 237 (1986).

    Article  CAS  Google Scholar 

  3. J. Lépinoux and L.P. Kubin: Dislocation mechanisms and steady states in the cyclic deformation of face centred cubic crystals. Philos. Mag. A 54, 631 (1986).

    Article  Google Scholar 

  4. A. Weidner, M. Sauzay, and W. Skrotzki: Experimental evaluation of the cyclic slip irreversibility factor. Key Eng. Mater. 465, 223 (2011).

    Article  Google Scholar 

  5. Z. Fan, O. Hardouin Duparc, and M. Sauzay: Molecular dynamics simulation of surface step reconstruction and irreversibility under cyclic loading. Acta Mater. 102, 149 (2016).

    Article  CAS  Google Scholar 

  6. S. Suresh: Fatigue of Metals, 2nd ed. (Cambridge University Press, Cambridge, U.K., 2001).

    Google Scholar 

  7. N. Thompson, N. Wadsworth, and N. Louat: The origin of fatigue fracture in copper. Philos. Mag. 1, 113 (1956).

    Article  CAS  Google Scholar 

  8. I.B. Kwon, M.E. Fine, and J. Weertman: Fatigue damage in copper single crystals at room and cryogenic temperatures. Acta Metall. 37, 2937 (1989).

    Article  CAS  Google Scholar 

  9. I.B. Kwon, M.E. Fine, and J. Weertman: Microstructural studies on the initiation and growth of small fatigue crack at 298, 77, and 4.2 K in polycrystalline copper. Acta Metall. 37, 2927 (1989).

    Article  CAS  Google Scholar 

  10. G. Venkataraman, T.S. Sriram, M.E. Fine, and Y.W. Chung: STM and surface analytical study of the effect of environment on fatigue crack initiation in silver single crystals I: Surface chemical effects. Scr. Metall. Mater. 24, 273 (1990).

    Article  CAS  Google Scholar 

  11. T.S. Sriram, M.E. Fine, and Y.W. Chung: STM and surface analytical study of the effect of environment on fatigue crack initiation in silver single crystals II: Effects of oxygen partial pressure. Scr. Metall. Mater. 24, 279 (1990).

    Article  CAS  Google Scholar 

  12. T.S. Sriram, M.E. Fine, and Y.W. Chung: The application of surface science to fatigue: The role of surface chemistry and surface modification in fatigue crack initiation in silver single crystals. Acta Metall. 40, 2769 (1992).

    Article  CAS  Google Scholar 

  13. F.E. Fujita: Oxidation and dislocation mechanisms in fatigue-crack formation. Fracture of solids, D.C. Drucker and J.J. Gilman, eds. (Interscience Publishers, New York, New York, 1963), pp. 657–670.

    Google Scholar 

  14. C.E. Bauer, R. Speiser, and J-P. Hirth: Surface energy as a function of oxygen activity. Metall. Mater. Trans. 7, 75 (1976).

    Article  Google Scholar 

  15. K. Tanaka and T. Mura: A dislocation model for fatigue crack initiation. J. Appl. Mech. 48, 97 (1981).

    Article  Google Scholar 

  16. M. Sauzay and J. Liu: Simulation of surface crack initiation induced by slip localization and point defect kinetics. Adv. Mater. Res. 891–892, 542 (2014).

    Article  Google Scholar 

  17. H. Shen, S.E. Podlaseck, and I.R. Kramer: Effect of vacuum on the fatigue life of aluminum. Acta Metall. 14, 341 (1966).

    Article  CAS  Google Scholar 

  18. C. Laird and G.C. Smith: Initial stages of damage in high stress fatigue in some pure metals. Philos. Mag. 8, 1945–1963 (1963).

    Article  CAS  Google Scholar 

  19. D.E. Martin: Plastic strain fatigue in air and vacuum. J. Basic Eng. 87, 850 (1965).

    Article  CAS  Google Scholar 

  20. I.G. Greenfield: The effect of diffused surface layers and oxygen atmosphere on the development of fatigue striations and cracks in copper single crystals. Acta Metall. 19, 857 (1971).

    Article  CAS  Google Scholar 

  21. J.M. Finney and C. Laird: Strain localization in cyclic deformation of copper single crystals. Philos. Mag. 31, 339 (1975).

    Article  CAS  Google Scholar 

  22. R. Wang, H. Mughrabi, S. McGovern, and M. Rapp: Fatigue of copper single crystals in vacuum and in air I: Persistent slip bands and dislocation microstructures. Mater. Sci. Eng. 65, 219 (1984).

    Article  CAS  Google Scholar 

  23. Z.S. Basinski and S.J. Basinski: Copper single crystal PSB morphology between 4.2 and 350 K. Acta Metall. 37, 3263 (1989).

    Article  CAS  Google Scholar 

  24. D.E. Witmer, G.C. Farrington, and C. Laird: Changes in strain localization behavior induced by fatigue in inert environments. Acta Metall. 35, 1895 (1987).

    Article  CAS  Google Scholar 

  25. N.M. Grinberg: The effect of vacuum on fatigue crack growth. Int. J. Fatigue 4, 83 (1982).

    Article  CAS  Google Scholar 

  26. S. Plimpton: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995).

    Article  CAS  Google Scholar 

  27. S. Plimpton, A. Thompson, R. Shan, S. Moore, and A. Kohlmeyer: LAMMPS Molecular Dynamics Simulator, Available at: http://lammps.sandia.gov/.

  28. W.J. Mortier, S.K. Ghosh, and S. Shankar: Electronegativity-equalization method for the calculation of atomic charges in molecules. J. Am. Chem. Soc. 108, 4315 (1986).

    Article  CAS  Google Scholar 

  29. A.K. Rappe and W.A. Goddard: Charge equilibration for molecular dynamics simulations. J. Phys. Chem. 95, 3358 (1991).

    Article  CAS  Google Scholar 

  30. T.P. Senftle, S. Hong, M.M. Islam, S.B. Kylasa, Y. Zheng, Y.K. Shin, C. Junkermeier, R. Engel-Herbert, M.J. Janik, H.M. Aktulga, T. Verstraelen, A. Grama, and A.C.T. van Duin: The ReaxFF reactive force-field: Development, applications and future directions. npj Comput. Mater. 2, 15011 (2016).

    Article  CAS  Google Scholar 

  31. T-R. Shan, B.D. Devine, T.W. Kemper, S.B. Sinnott, and S.R. Phillpot: Charge-optimized many-body potential for the hafnium/hafnium oxide system. Phys. Rev. B 81, 125328 (2010).

    Article  CAS  Google Scholar 

  32. T. Liang, T-R. Shan, Y-T. Cheng, B.D. Devine, M. Noordhoek, Y. Li, Z. Lu, S.R. Phillpot, and S.B. Sinnott: Classical atomistic simulations of surfaces and heterogeneous interfaces with the charge-optimized many body (COMB) potentials. Mater. Sci. Eng., R 74, 255 (2013).

    Article  Google Scholar 

  33. O. Assowe Dabar: Study of the Corrosion Processes of Nickel by Molecular Dynamics with a ReaxFF Reactive Potential (French, Université de Bourgogne, France, 2012).

    Google Scholar 

  34. G.M. Psofogiannakis, J.F. McCleerey, E. Jaramillo, and A.C.T. van Duin: ReaxFF reactive molecular dynamics simulation of the hydration of Cu-SSZ-13 zeolite and the formation of Cu dimers. J. Phys. Chem. C 119, 6678 (2015).

    Article  CAS  Google Scholar 

  35. A.C.T. Van Duin, V.S. Bryantsev, M.S. Diallo, W.A. Goddard, O. Rahaman, D.J. Doren, D. Raymand, and K. Hermansson: Development and validation of a ReaxFF reactive force field for Cu cation/water interactions and copper metal/metal oxide/metal hydroxide condensed phases. J. Phys. Chem. A 114, 9507 (2010).

    Article  CAS  Google Scholar 

  36. J. Wang, E.S. Fisher, and M.H. Manghnzmi: Elastic constants of nickel oxide. Chin. Phys. Lett. 8, 153 (1991).

    Article  CAS  Google Scholar 

  37. M.D. Towler, N.L. Allan, N.M. Harrison, V.R. Saunders, W.C. Macrodt, and E. Aprà: Ab initio study of MnO and NiO. Phys. Rev. B 50, 5041 (1994).

    Article  CAS  Google Scholar 

  38. S.L. Dudarev, G.A. Botton, S.Y. Savrasov, Z. Szotek, W.M. Temmerman, and A. Sutton: Electronic structure and elastic properties of strongly correlated metal oxides from first principles: LSDA + U, SIC-LSDA and EELS study of UO2 and NiO. Phys. Status Solidi A 166, 429 (1998).

    Article  CAS  Google Scholar 

  39. G. Simmons and H. Wang: Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook, 2nd ed. (The MIT Press, Cambridge, Massachusetts, USA, 1971).

    Google Scholar 

  40. P.d.V. Du Plessis, S.J. van Tonder, and L. Alberts: Elastic constants of a NiO single crystal: I (magnetic transitions). J. Phys. C: Solid State Phys. 4, 1983 (1971).

    Article  Google Scholar 

  41. N. Uchida and S. Saito: Elastic constants and acoustic absorption coefficients in MnO, CoO, and NiO single crystals at room temperature. J. Acoust. Soc. Am. 51, 1602 (1972).

    Article  CAS  Google Scholar 

  42. J. Hallberg and R.C. Hanson: The elastic constants of cuprous oxide. Phys. Status Solidi B 42, 305 (1970).

    Article  CAS  Google Scholar 

  43. M.M. Beg and S.M. Shapiro: Study of phonon dispersion relations in cuprous oxide by inelastic neutron scattering. Phys. Rev. B 13, 1728 (1976).

    Article  CAS  Google Scholar 

  44. R.D. Etters and O. Hardouin Duparc: Character of the magnetic disorder in ε-and δ-phase O2 monolayers on graphite. Phys. Rev. B 32, 7600 (1985).

    Article  CAS  Google Scholar 

  45. O. Hardouin Duparc and R.D. Etters: Thermodynamic behavior of the structures and magnetic order of O2 monolayers on graphite. J. Chem. Phys. 86, 1020 (1987).

    Article  CAS  Google Scholar 

  46. F. Wiame, V. Maurice, and P. Marcus: Initial stages of oxidation of Cu(111). Surf. Sci. 601, 1193 (2007).

    Article  CAS  Google Scholar 

  47. F.P. Fehlner and N.F. Mott: Low-temperature oxidation. Oxid. Met. 2, 59 (1970).

    Article  CAS  Google Scholar 

  48. P.H. Holloway and J.B. Hudson: Kinetics of the reaction of oxygen with clean nickel single crystal surfaces. Surf. Sci. 43, 123 (1974).

    Article  CAS  Google Scholar 

  49. R.G. Smeenk, R.M. Tromp, J.F. Van Der Veen, and F.W. Saris: A quantitative ion-scattering study of the Ni(110) surface during the early stages of oxidation. Surf. Sci. 95, 156 (1980).

    Article  CAS  Google Scholar 

  50. P.H. Holloway: Chemisorption and oxide formation on metals: Oxygen–nickel reaction. J. Vac. Sci. Technol. 18, 653 (1981).

    Article  CAS  Google Scholar 

  51. E.A. Wood: Vocabulary of Surface Crystallography. J. Appl. Phys. 35, 1306 (1964).

    Article  CAS  Google Scholar 

  52. C. Davisson and L.H. Germer: Diffraction of electrons by a crystal of nickel. Phys. Rev. 30, 705 (1927).

    Article  CAS  Google Scholar 

  53. A. Spitzer and H. Lüth: The adsorption of oxygen on copper surfaces. Surf. Sci. 118, 136 (1982).

    Article  CAS  Google Scholar 

  54. T. Sueyoshi, T. Sasaki, and Y. Iwasawa: Molecular and atomic adsorption states of oxygen on Cu(111) at 100–300 K. Surf. Sci. 365, 310 (1996).

    Article  CAS  Google Scholar 

  55. L. Lou, P. Nordlander, and B. Hellsing: Theoretical study of O2 dissociation on copper and nickel clusters. Surf. Sci. 320, 320 (1994).

    Article  CAS  Google Scholar 

  56. B. Devine, T-R. Shan, Y-T. Cheng, A.J.H. McGaughey, M. Lee, S.R. Phillpot, and S.B. Sinnott: Atomistic simulations of copper oxidation and Cu/Cu2O interfaces using charge-optimized many-body potentials. Phys. Rev. B 84, 125308 (2011).

    Article  CAS  Google Scholar 

  57. L.H. Dubois: Oxygen chemisorption and cuprous oxide formation on Cu(111): A high resolution EELS study. Surf. Sci. 119, 399 (1982).

    Article  CAS  Google Scholar 

  58. G. Zhou and J.C. Yang: Temperature effects on the growth of oxide islands on Cu(110). Appl. Surf. Sci. 222, 357 (2004).

    Article  CAS  Google Scholar 

  59. V. Volterra: On the equilibrium of multiply connected elastic bodies (in French). Ann. Sci. École Norm. Supér. 24, 401 (1907).

    Article  Google Scholar 

  60. Z.S. Basinski and S.J. Basinski: Fundamental aspects of low amplitude cyclic deformation in face-centred cubic crystals. Prog. Mater. Sci. 36, 89 (1992).

    Article  CAS  Google Scholar 

  61. H. Mughrabi: Cyclic slip irreversibilities and the evolution of fatigue damage. Metall. Mater. Trans. A 40, 1257 (2009).

    Article  CAS  Google Scholar 

  62. H. Mughrabi: Fatigue, an everlasting materials problem—Still en vogue. Procedia Eng. 2, 3 (2010).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Prof. H. Mughrabi is gratefully acknowledged for his participation to the board of the Ph.D. defense of Z. Fan. The authors thank Dr. Frédéric Wiame for useful discussions about metal oxidation. Computer time has been granted by the École Polytechnique through the LLR-LSI project. Z. Fan benefited from a Ph.D. grant supported by both IDEX Paris-Saclay and the CEA research program DEN/RSTB/RMATE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olivier Hardouin Duparc.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Z., Duparc, O.H., Sauzay, M. et al. Molecular dynamics simulations of surface oxidation and of surface slip irreversibility under fatigue in oxygen environment. Journal of Materials Research 32, 4327–4341 (2017). https://doi.org/10.1557/jmr.2017.400

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.400

Navigation