Skip to main content

Advertisement

Log in

Electron mobility in monoclinic β-Ga2O3—Effect of plasmon-phonon coupling, anisotropy, and confinement

  • Invited Paper
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

This work reports an investigation of electron transport in monoclinic β-Ga2O3 based on a combination of density functional perturbation theory based-lattice dynamical computations, coupling calculation of lattice modes with collective plasmon oscillations, and Boltzmann theory-based transport calculations. The strong entanglement of the plasmon with the different longitudinal optical (LO) modes makes the role LO-plasmon coupling crucial for transport. The electron density dependence of the electron mobility in β-Ga2O3 is studied in the bulk material form and also in the form of a two-dimensional electron gas. Under high electron density, a bulk mobility of 182 cm2/V s is predicted, while in the 2DEG form, the corresponding mobility is about 418 cm2/V s when remote impurities are present at the interface and improves further as the remote impurity center moves away from the interface. The trend of the electron mobility shows promise for realizing high-electron mobility in dopant-isolated electron channels. The experimentally observed small anisotropy in mobility is traced through a transient Monte Carlo simulation. It is found that the anisotropy of the IR-active phonon modes is responsible for giving rise to the anisotropy in low-field electron mobility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. M. Higashiwaki, K. Sasaki, T. Kamimura, M. Hoi Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi: Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3(010) substrates and temperature dependence of their device characteristics. Appl. Phys. Lett. 103, 123511 (2013).

    Article  Google Scholar 

  2. M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi: Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3(010) substrates. Appl. Phys. Lett. 100, 013504 (2012).

    Article  Google Scholar 

  3. M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi: Recent progress in Ga2O3 power devices. Semicond. Sci. Technol. 31, 034001 (2016).

    Article  Google Scholar 

  4. T. Oishi, Y. Koga, K. Harada, and M. Kasu: High-mobility β-Ga2O3(201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl. Phys. Express 8, 031101 (2015).

    Article  CAS  Google Scholar 

  5. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi: Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3(010) substrates. IEEE Electron Device Lett. 34, 493–495 (2013).

    Article  CAS  Google Scholar 

  6. M. Higashiwaki, K. Sasaki, K. Goto, K. Nomura, Q.T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, and A. Kuramata: Ga2O3 Schottky barrier diodes with n-Ga2O3 drift layers grown by HVPE. In 73rd Annual Device Research Conference (DRC), The ohio State University, Columbus Ohio, June 21–24 (2015), pp. 29–30.

    Google Scholar 

  7. T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita: Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 substrates. Appl. Phys. Express 1, 011202 (2008).

    Article  Google Scholar 

  8. H. He, R. Orlando, M.A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat: First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B 74, 195123 (2006).

    Article  Google Scholar 

  9. C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeißer, J.R. Weber, J.B. Varley, and C.G. VandeWalle: Experimental electronic structure of In2O3 and Ga2O3. New J. Phys. 13, 085014 (2011).

    Article  Google Scholar 

  10. H. Peelaers and C.G. Van de Walle: Brillouin zone and band structure of β-Ga2O3. Phys. Status Solidi B 252, 828–832 (2015).

    Article  CAS  Google Scholar 

  11. Y. Zhang, J. Yan, G. Zhao, and W. Xie: First-principles study on electronic structure and optical properties of Sn-doped β-Ga2O3. Physica B 405, 3899–3903 (2010).

    Article  CAS  Google Scholar 

  12. K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi: β-Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3(010) substrates. IEEE Electron Device Lett. 34, 493–495 (2013).

    Article  CAS  Google Scholar 

  13. B. Liu, M. Gu, and X. Liu: Lattice dynamical, dielectric, and thermodynamic properties of β-Ga2O3 from first principles. Appl. Phys. Lett. 91, 172102 (2007).

    Article  Google Scholar 

  14. M.D. Santia, N. Tandon, and J.D. Albrecht: Lattice thermal conductivity in β-Ga2O3 from first principles. Appl. Phys. Lett. 107, 041907 (2015).

    Article  Google Scholar 

  15. M. Schubert, R. Korlacki, S. Knight, T. Hofmann, S. Schöche, V. Darakchieva, E. Janzén, B. Monemar, D. Gogova, Q.T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, K. Goto, A. Kuramata, S. Yamakoshi, and M. Higashiwaki: Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals. Phys. Rev. B 93, 125209 (2016).

    Article  Google Scholar 

  16. A. Parisini and R. Fornari: Analysis of the scattering mechanisms controlling electron mobility in β-Ga2O3 crystals. Semicond. Sci. Technol. 31, 035023 (2016).

    Article  Google Scholar 

  17. K. Ghosh and U. Singisetti: Ab initio calculation of electron–phonon coupling in monoclinic β-Ga2O3 crystal. Appl. Phys. Lett. 109, 072102 (2016).

    Article  Google Scholar 

  18. Y. Kang, K. Krishnaswamy, H. Peelaers, and C.G. VandeWalle: Fundamental limits on the electron mobility of β-Ga2O3. J. Phys.: Condens. Matter 29, 234001 (2017).

    Google Scholar 

  19. N. Ma, A. Verma, Z. Guo, T. Luo, and D. Jena: Intrinsic electron mobility limits in β-Ga2O3. Appl. Phy. Lett. 109 (21), 212101 (2016).

    Article  Google Scholar 

  20. C. Verdi and F. Giustino: Frohlich electron-phonon vertex from first principles. Phys. Rev. Lett. 115, 176401 (2015).

    Article  Google Scholar 

  21. S. Baroni, S.D. Gironcoli, and A.D. Corso: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).

    Article  CAS  Google Scholar 

  22. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).

    Google Scholar 

  23. J. Noffsinger, F. Giustino, B.D. Malone, C-H. Park, S.G. Louie, and M.L. Cohen: EPW: A program for calculating the electron–phonon coupling using maximally localized wannier functions. Comput. Phys. Commun. 181, 2140–2148 (2010).

    Article  CAS  Google Scholar 

  24. F. Giustino, M.L. Cohen, and S.G. Louie: Electron-phonon interaction using Wannier functions. Phys. Rev. B 76, 165108 (2007).

    Article  Google Scholar 

  25. X. Gonze and C. Lee: Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355 (1997).

    Article  CAS  Google Scholar 

  26. K. Momma and F. Izumi: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).

    Article  CAS  Google Scholar 

  27. K. Diff and K.F. Brennan: Theory of electron-plasmon-scattering rate in highly doped bulk semiconductors. J. Appl. Phys. 69, 3097–3103 (1991).

    Article  Google Scholar 

  28. M.V. Fischetti, D.A. Neumayer, and E.A. Cartier: Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with a high-κ insulator: The role of remote phonon scattering. J. Appl. Phys. 90, 4587–4608 (2001).

    Article  CAS  Google Scholar 

  29. H. Fröhlich: Electrons in lattice fields. Adv. Phys. 3, 325–361 (1954).

    Article  Google Scholar 

  30. D. Rode: Low-field electron transport. Semicond. Semimetals 10, 1–89 (1975).

    Article  CAS  Google Scholar 

  31. M.H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki: Electron channel mobility in silicon-doped Ga2O3 MOSFETs with a resistive buffer layer. Jpn. J. Appl. Phys. 55, 1202B1209 (2016).

    Article  Google Scholar 

  32. S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A.R. Arehart, J. Hwang, S. Lodha, and S. Rajan: Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor. Appl. Phys. Lett. 111, 023502 (2017).

    Article  Google Scholar 

  33. W. Walukiewicz, H.E. Ruda, J. Lagowski, and H.C. Gatos: Electron mobility in modulation-doped heterostructures. Phys. Rev. B 30, 4571 (1984).

    Article  CAS  Google Scholar 

  34. T. Ando, A.B. Fowler, and F. Stern: Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).

    Article  CAS  Google Scholar 

  35. F. Stern: Polarizability of a two-dimensional electron gas. Phys. Rev. Lett. 18, 546–548 (1967).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors acknowledge the support from the National Science Foundation (NSF) grant (ECCS 1607833). The authors also acknowledge the excellent high-performance computing cluster provided by the Center for Computational Research (CCR) at the University at Buffalo.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Krishnendu Ghosh or Uttam Singisetti.

Supplementary Material

43578_2017_32224142_MOESM1_ESM.docx

Supplementary Information: Electron Mobility in Monoclinic β-Ga2O3 — Effect of Plasmon-phonon Coupling, Anisotropy, and Confinement (approximately 19.5 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghosh, K., Singisetti, U. Electron mobility in monoclinic β-Ga2O3—Effect of plasmon-phonon coupling, anisotropy, and confinement. Journal of Materials Research 32, 4142–4152 (2017). https://doi.org/10.1557/jmr.2017.398

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.398

Navigation