Abstract
This work reports an investigation of electron transport in monoclinic β-Ga2O3 based on a combination of density functional perturbation theory based-lattice dynamical computations, coupling calculation of lattice modes with collective plasmon oscillations, and Boltzmann theory-based transport calculations. The strong entanglement of the plasmon with the different longitudinal optical (LO) modes makes the role LO-plasmon coupling crucial for transport. The electron density dependence of the electron mobility in β-Ga2O3 is studied in the bulk material form and also in the form of a two-dimensional electron gas. Under high electron density, a bulk mobility of 182 cm2/V s is predicted, while in the 2DEG form, the corresponding mobility is about 418 cm2/V s when remote impurities are present at the interface and improves further as the remote impurity center moves away from the interface. The trend of the electron mobility shows promise for realizing high-electron mobility in dopant-isolated electron channels. The experimentally observed small anisotropy in mobility is traced through a transient Monte Carlo simulation. It is found that the anisotropy of the IR-active phonon modes is responsible for giving rise to the anisotropy in low-field electron mobility.
Similar content being viewed by others
References
M. Higashiwaki, K. Sasaki, T. Kamimura, M. Hoi Wong, D. Krishnamurthy, A. Kuramata, T. Masui, and S. Yamakoshi: Depletion-mode Ga2O3 metal-oxide-semiconductor field-effect transistors on β-Ga2O3(010) substrates and temperature dependence of their device characteristics. Appl. Phys. Lett. 103, 123511 (2013).
M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, and S. Yamakoshi: Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3(010) substrates. Appl. Phys. Lett. 100, 013504 (2012).
M. Higashiwaki, K. Sasaki, H. Murakami, Y. Kumagai, A. Koukitu, A. Kuramata, T. Masui, and S. Yamakoshi: Recent progress in Ga2O3 power devices. Semicond. Sci. Technol. 31, 034001 (2016).
T. Oishi, Y. Koga, K. Harada, and M. Kasu: High-mobility β-Ga2O3(201) single crystals grown by edge-defined film-fed growth method and their Schottky barrier diodes with Ni contact. Appl. Phys. Express 8, 031101 (2015).
K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi: Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3(010) substrates. IEEE Electron Device Lett. 34, 493–495 (2013).
M. Higashiwaki, K. Sasaki, K. Goto, K. Nomura, Q.T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, B. Monemar, A. Koukitu, and A. Kuramata: Ga2O3 Schottky barrier diodes with n-Ga2O3 drift layers grown by HVPE. In 73rd Annual Device Research Conference (DRC), The ohio State University, Columbus Ohio, June 21–24 (2015), pp. 29–30.
T. Oshima, T. Okuno, N. Arai, N. Suzuki, S. Ohira, and S. Fujita: Vertical solar-blind deep-ultraviolet Schottky photodetectors based on β-Ga2O3 substrates. Appl. Phys. Express 1, 011202 (2008).
H. He, R. Orlando, M.A. Blanco, R. Pandey, E. Amzallag, I. Baraille, and M. Rérat: First-principles study of the structural, electronic, and optical properties of Ga2O3 in its monoclinic and hexagonal phases. Phys. Rev. B 74, 195123 (2006).
C. Janowitz, V. Scherer, M. Mohamed, A. Krapf, H. Dwelk, R. Manzke, Z. Galazka, R. Uecker, K. Irmscher, R. Fornari, M. Michling, D. Schmeißer, J.R. Weber, J.B. Varley, and C.G. VandeWalle: Experimental electronic structure of In2O3 and Ga2O3. New J. Phys. 13, 085014 (2011).
H. Peelaers and C.G. Van de Walle: Brillouin zone and band structure of β-Ga2O3. Phys. Status Solidi B 252, 828–832 (2015).
Y. Zhang, J. Yan, G. Zhao, and W. Xie: First-principles study on electronic structure and optical properties of Sn-doped β-Ga2O3. Physica B 405, 3899–3903 (2010).
K. Sasaki, M. Higashiwaki, A. Kuramata, T. Masui, and S. Yamakoshi: β-Ga2O3 Schottky barrier diodes fabricated by using single-crystal β-Ga2O3(010) substrates. IEEE Electron Device Lett. 34, 493–495 (2013).
B. Liu, M. Gu, and X. Liu: Lattice dynamical, dielectric, and thermodynamic properties of β-Ga2O3 from first principles. Appl. Phys. Lett. 91, 172102 (2007).
M.D. Santia, N. Tandon, and J.D. Albrecht: Lattice thermal conductivity in β-Ga2O3 from first principles. Appl. Phys. Lett. 107, 041907 (2015).
M. Schubert, R. Korlacki, S. Knight, T. Hofmann, S. Schöche, V. Darakchieva, E. Janzén, B. Monemar, D. Gogova, Q.T. Thieu, R. Togashi, H. Murakami, Y. Kumagai, K. Goto, A. Kuramata, S. Yamakoshi, and M. Higashiwaki: Anisotropy, phonon modes, and free charge carrier parameters in monoclinic β-gallium oxide single crystals. Phys. Rev. B 93, 125209 (2016).
A. Parisini and R. Fornari: Analysis of the scattering mechanisms controlling electron mobility in β-Ga2O3 crystals. Semicond. Sci. Technol. 31, 035023 (2016).
K. Ghosh and U. Singisetti: Ab initio calculation of electron–phonon coupling in monoclinic β-Ga2O3 crystal. Appl. Phys. Lett. 109, 072102 (2016).
Y. Kang, K. Krishnaswamy, H. Peelaers, and C.G. VandeWalle: Fundamental limits on the electron mobility of β-Ga2O3. J. Phys.: Condens. Matter 29, 234001 (2017).
N. Ma, A. Verma, Z. Guo, T. Luo, and D. Jena: Intrinsic electron mobility limits in β-Ga2O3. Appl. Phy. Lett. 109 (21), 212101 (2016).
C. Verdi and F. Giustino: Frohlich electron-phonon vertex from first principles. Phys. Rev. Lett. 115, 176401 (2015).
S. Baroni, S.D. Gironcoli, and A.D. Corso: Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 73, 515–562 (2001).
P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A. Dal Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, and R.M. Wentzcovitch: QUANTUM ESPRESSO: A modular and open-source software project for quantum simulations of materials. J. Phys.: Condens. Matter 21, 395502 (2009).
J. Noffsinger, F. Giustino, B.D. Malone, C-H. Park, S.G. Louie, and M.L. Cohen: EPW: A program for calculating the electron–phonon coupling using maximally localized wannier functions. Comput. Phys. Commun. 181, 2140–2148 (2010).
F. Giustino, M.L. Cohen, and S.G. Louie: Electron-phonon interaction using Wannier functions. Phys. Rev. B 76, 165108 (2007).
X. Gonze and C. Lee: Dynamical matrices, Born effective charges, dielectric permittivity tensors, and interatomic force constants from density-functional perturbation theory. Phys. Rev. B 55, 10355 (1997).
K. Momma and F. Izumi: VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Crystallogr. 44, 1272–1276 (2011).
K. Diff and K.F. Brennan: Theory of electron-plasmon-scattering rate in highly doped bulk semiconductors. J. Appl. Phys. 69, 3097–3103 (1991).
M.V. Fischetti, D.A. Neumayer, and E.A. Cartier: Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with a high-κ insulator: The role of remote phonon scattering. J. Appl. Phys. 90, 4587–4608 (2001).
H. Fröhlich: Electrons in lattice fields. Adv. Phys. 3, 325–361 (1954).
D. Rode: Low-field electron transport. Semicond. Semimetals 10, 1–89 (1975).
M.H. Wong, K. Sasaki, A. Kuramata, S. Yamakoshi, and M. Higashiwaki: Electron channel mobility in silicon-doped Ga2O3 MOSFETs with a resistive buffer layer. Jpn. J. Appl. Phys. 55, 1202B1209 (2016).
S. Krishnamoorthy, Z. Xia, C. Joishi, Y. Zhang, J. McGlone, J. Johnson, M. Brenner, A.R. Arehart, J. Hwang, S. Lodha, and S. Rajan: Modulation-doped β-(Al0.2Ga0.8)2O3/Ga2O3 field-effect transistor. Appl. Phys. Lett. 111, 023502 (2017).
W. Walukiewicz, H.E. Ruda, J. Lagowski, and H.C. Gatos: Electron mobility in modulation-doped heterostructures. Phys. Rev. B 30, 4571 (1984).
T. Ando, A.B. Fowler, and F. Stern: Electronic properties of two-dimensional systems. Rev. Mod. Phys. 54, 437–672 (1982).
F. Stern: Polarizability of a two-dimensional electron gas. Phys. Rev. Lett. 18, 546–548 (1967).
ACKNOWLEDGMENTS
The authors acknowledge the support from the National Science Foundation (NSF) grant (ECCS 1607833). The authors also acknowledge the excellent high-performance computing cluster provided by the Center for Computational Research (CCR) at the University at Buffalo.
Author information
Authors and Affiliations
Corresponding authors
Supplementary Material
43578_2017_32224142_MOESM1_ESM.docx
Supplementary Information: Electron Mobility in Monoclinic β-Ga2O3 — Effect of Plasmon-phonon Coupling, Anisotropy, and Confinement (approximately 19.5 KB)
Rights and permissions
About this article
Cite this article
Ghosh, K., Singisetti, U. Electron mobility in monoclinic β-Ga2O3—Effect of plasmon-phonon coupling, anisotropy, and confinement. Journal of Materials Research 32, 4142–4152 (2017). https://doi.org/10.1557/jmr.2017.398
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1557/jmr.2017.398