Skip to main content
Log in

Phase field modeling of solidification in multi-component alloys with a case study on the Inconel 718 alloy

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

We develop a phase field model for the simulation of chemical diffusion-limited solidification in complex metallic alloys. The required thermodynamic and kinetic input information is obtained from CALPHAD calculations using the commercial software-package ThermoCalc. Within the case study on the nickel-base superalloy Inconel 718, we perform simulations of solidification with the explicit consideration of 6 different chemical elements. The stationary dendritic tip velocities as functions of the constant undercooling temperature obtained from isothermal solidification are compared with the stationary tip temperatures as functions of the imposed pulling velocity obtained during directional solidification. We obtain a good quantitative agreement between the two different velocity—undercooling functions. This indicates that the model provides a self consistent description of the solidification. Finally, the simulation results are discussed in light of experimental solidification conditions found in single crystalline casting experiments of Inconel 718.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5

Similar content being viewed by others

References

  1. R.C. Reed: The Superalloys Fundamentals and Applications (Cambridge University Press, New York, New York, 2006).

    Book  Google Scholar 

  2. G.P. Ivantsov: Temperature field around a spherical, cylindrical and acicular crystal growth in a supercooled melt. Dokl. Akad. Nauk USSR 58, 567 (1947).

    Google Scholar 

  3. E.A. Brener and V.I. Mel’nikov: Pattern selection in two-dimensional dendritic growth. Adv. Phys. 40, 53 (1991).

    Article  CAS  Google Scholar 

  4. J.A. Danzig and M. Rappaz: Solidification (EPFL Press, Lausanne, Switzerland, 2009). Available at: http://www.solidification.org/.

    Book  Google Scholar 

  5. E.A. Brener, G. Boussinot, C. Huter, M. Fleck, D. Pilipenko, R. Spatschek, and D.E. Temkin: Pattern formation during diffusional transformations in the presence of triple junctions and elastic effects. J. Phys.: Condens. Matter 21, 464106 (2009).

    CAS  Google Scholar 

  6. M. Ben Amar and E.A. Brener: Parity-broken dendrites. Phys. Rev. Lett. 75, 561–564 (1995).

    Article  CAS  Google Scholar 

  7. T. Ihle and H. Müller-Krumbhaar: Fractal and compact growth morphologies in phase transitions with diffusion transport. Phys. Rev. E 49, 2972–2991 (1994).

    Article  CAS  Google Scholar 

  8. D. Turnbull: Metastable structures in metallurgy. Metall. Trans. A 12, 695 (1981).

    Article  CAS  Google Scholar 

  9. H.E.A. Huitema, M.J. Vlot, and J.P. van der Eerden: Simulations of crystal growth from Lennard-Jones melt: Detailed measurements of the interface structure. J. Chem. Phys. 111, 4714 (1999).

    Article  CAS  Google Scholar 

  10. J. Bragard, A. Karma, Y.H. Lee, and M. Plapp: Linking phase-field and atomistic simulations to model dendritic solidification in highly undercooled melts. Interface Sci. 10, 121 (2002).

    Article  CAS  Google Scholar 

  11. R. Kupferman, D.A. Kessler, and E. Ben-Jacob: Coexistence of symmetric and parity-broken dendrites in a channel. Physica A 213, 451–464 (1995).

    Article  Google Scholar 

  12. M. Sabouri-Ghomi, N. Provatas, and M. Grant: Solidification of a supercooled liquid in a narrow channel. Phys. Rev. Lett. 86, 5084–5087 (2001).

    Article  CAS  Google Scholar 

  13. M. Fleck, C. Hüter, D. Pilipenko, R. Spatschek, and E.A. Brener: Pattern formation during diffusion limited transformations in solids. Philos. Mag. 90, 265 (2010).

    Article  CAS  Google Scholar 

  14. M. Fleck, E.A. Brener, R. Spatschek, and B. Eidel: Elastic and plastic effects on solid-state transformations: A phase field study. Int. J. Mater. Res. 4, 462 (2010).

    Article  Google Scholar 

  15. K. Kassner, R. Guérin, T. Ducousso, and J-M. Debierre: Phase-field study of solidification in three-dimensional channels. Phys. Rev. E 82, 021606 (2010).

    Article  Google Scholar 

  16. S. Gurevich, A. Karma, M. Plapp, and R. Trivedi: Phase-field study of three-dimensional steady-state growth shapes in directional solidification. Phys. Rev. E 81, 011603 (2010).

    Article  Google Scholar 

  17. Y. Ma and M. Plapp: Phase-field simulations and geometrical characterization of cellular solidification fronts. J. Cryst. Growth 385, 140 (2014).

    Article  CAS  Google Scholar 

  18. W. Boettinger, J. Warren, C. Beckermann, and A. Karma: Phase-field simulation of solidification. Annu. Rev. Mater. Res. 32, 163 (2002).

    Article  CAS  Google Scholar 

  19. M. Asta, C. Beckermann, A. Karma, W. Kurz, R. Napolitano, M. Plapp, G. Purdy, M. Rappaz, and R. Trivedi: Solidification microstructures and solid-state parallels: Recent developments, future directions. Acta Mater. 57, 941 (2009).

    Article  CAS  Google Scholar 

  20. A. Karma and W-J. Rappel: Quantitative phase-field modeling of dendritic growth in two and three dimensions. Phys. Rev. E 57, 4323–4349 (1998).

    Article  CAS  Google Scholar 

  21. R.F. Almgren: Second-order phase field asymptotics for unequal conductivities. SIAM J. Appl. Math. 59, 2086 (1999).

    Article  Google Scholar 

  22. B. Echebarria, R. Folch, A. Karma, and M. Plapp: Quantitative phase-field model of alloy solidification. Phys. Rev. E 70, 061604 (2004).

    Article  Google Scholar 

  23. R. Folch and M. Plapp: Quantitative phase-field modeling of two-phase growth. Phys. Rev. E 72, 011602 (2005).

    Article  CAS  Google Scholar 

  24. S.G. Kim: A phase-field model with antitrapping current for multicomponent alloys with arbitrary thermodynamic properties. Acta Mater. 55, 4391 (2007).

    Article  CAS  Google Scholar 

  25. M. Plapp: Remarks on some open problems in phase-field modelling of solidification. Philos. Mag. 91, 1478–6435 (2011).

    Article  Google Scholar 

  26. E.A. Brener and G. Boussinot: Kinetic cross coupling between nonconserved and conserved fields in phase field models. Phys. Rev. E 86, 060601 (2012).

    Article  Google Scholar 

  27. G. Boussinot, E.A. Brener, C. Hüter, and R. Spatschek: Elimination of surface diffusion in the non-diagonal phase field model. Continuum Mech. Thermodyn. 29, 969–976 (2017).

    Article  Google Scholar 

  28. Calculated with thermocalc using TTNi8 and MobNi1 (http://www.thermocalc.com).

  29. L.T. Mushongera, M. Fleck, J. Kundin, Y. Wang, and H. Emmerich: Effect of Re on directional γ′-coarsening in commercial single crystal Ni-base superalloys: A phase field study. Acta Mater. 93, 60 (2015).

    Article  CAS  Google Scholar 

  30. L.T. Mushongera, M. Fleck, J. Kundin, F. Querfurth, and H. Emmerich: Phase-field study of anisotropic γ′-coarsening kinetics in Ni-base superalloys with varying Re and Ru contents. Adv. Eng. Mater., 17, 1149–1157 (2015).

    Article  CAS  Google Scholar 

  31. J.J. Eggleston, G.B. McFadden, and P.W. Voorhees: A phase-field model for highly anisotropic interfacial energy. Physica D 150, 91–103 (2001).

    Article  CAS  Google Scholar 

  32. J-M. Debierre, A. Karma, F. Celestini, and R. Guérin: Phase-field approach for faceted solidification. Phys. Rev. E 68, 041604 (2003).

    Article  Google Scholar 

  33. M. Fleck, L.T. Mushongera, D. Pilipenko, K. Ankit, and H. Emmerich: On phase-field modeling with a highly anisotropic interfacial energy. Eur. Phys. J. Plus 126, 95 (2011).

    Article  Google Scholar 

  34. J. Heulens, B. Blanpain, and N. Moelans: A phase field model for isothermal crystallization of oxide melts. Acta Mater. 59, 2156 (2011).

    Article  CAS  Google Scholar 

  35. M. Plapp: Unified derivation of phase-field models for alloy solidification from a grand-potential functional. Phys. Rev. E 84, 031601 (2011).

    Article  Google Scholar 

  36. K. Kassner, C. Misbah, J. Müller, J. Kappey, and P. Kohlert: Phase-field modeling of stress-induced instabilities. Phys. Rev. E 63, 036117 (2001).

    Article  CAS  Google Scholar 

  37. M. Fleck: Solid-state transformations and crack propagation: A phase field study. Ph.D. thesis, RWTH Aachen, Aachen, Germany (2011). Available at: http://darwin.bth.rwth-aachen.de/opus3/volltexte/2011/3511.

    Google Scholar 

  38. G. Pottlacher, H. Hosaeus, B. Wilthan, E. Kaschnitz, and A. Seifter: Thermophysikalische Eigenschaften von festem und flüssigem Inconel 718. Thermochim. Acta 382, 255 (2002).

    Article  CAS  Google Scholar 

  39. B. Nestler, D. Danilov, and P. Galenko: Crystal growth of pure substances: Phase-field simulations in comparison with analytical and experimental results. J. Comput. Phys. 207, 221 (2005).

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

We thank the Federal Ministry for Economics and Energy (BMWi) of the Federal Republic of Germany for the financial support under the running project COORETEC: ISar (funding code: 03ET7047D) Further, we thank the Federal Ministry of Education and Research (BMBF) for the financial support under the running project ParaPhase (funding code: 01IH15005B). Furthermore, parts of the research presented in this article have received funding from the European Union’s Seventh Framework Program (FP7/2007-2013) for the Clean Sky Joint Technology Initiative under grant agreement number 326020. Also, we thank the MTU Aero Engines AG for the fruit-full collaboration within the research project SIMCHAIN. Finally, we thank the German Research Foundation (DFG) for the financial support within the second phase of the priority program 1713.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Fleck.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fleck, M., Querfurth, F. & Glatzel, U. Phase field modeling of solidification in multi-component alloys with a case study on the Inconel 718 alloy. Journal of Materials Research 32, 4605–4615 (2017). https://doi.org/10.1557/jmr.2017.393

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.393

Navigation