Skip to main content

Advertisement

Log in

A mean plastic strain fatigue–creep life prediction and reliability analysis of AISI H13 based on energy method

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Extrusion is an efficient hot working process to aluminum production and AISI H13 (4Cr5MoSiV1) as the main material of extrusion tool suffers from fatigue and creep damage due to its extreme working condition. A new mean plastic strain life prediction has been proposed based on the energy method. In addition, statistical analysis is also taken into consideration to complement this physic-based model due to other unmeasured and unknown exogenous influences. To validate the model, a series of AISI H13 fatigue and fatigue–creep tests were conducted at 500 °C close to the practical aluminum extrusion process. The strain-controlled tests were used for obtaining the parameters, while the stress-controlled tests were utilized for validating the proposed model. It shows that the model predictions were in good agreement with the experimental results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. L. Donati and L. Tomesani: The effect of die design on the production and seam weld quality of extruded aluminum profiles. J. Mater. Process. Technol. 164–165, 1025–1031 (2005).

    Article  Google Scholar 

  2. S.N.A. Rahim, M.A. Lajis, and S. Ariffin: A review on recycling aluminum chips by hot extrusion process. Procedia CIRP 26, 761–766 (2015).

    Article  Google Scholar 

  3. D. Delagnes, P. Lamesle, M.H. Mathon, N. Mebarki, and C. Levaillant: Influence of silicon content on the precipitation of secondary carbides and fatigue properties of a 5% Cr tempered martensitic steel. Mater. Sci. Eng., A 394 (1–2), 435–444 (2005).

    Article  Google Scholar 

  4. G. Telasang, J. Dutta Majumdar, G. Padmanabham, and I. Manna: Wear and corrosion behavior of laser surface engineered AISI H13 hot working tool steel. Surf. Coat. Technol. 261, 69–78 (2015).

    Article  CAS  Google Scholar 

  5. Z. Zhang, P. Lin, D. Cong, S. Kong, H. Zhou, and L. Ren: The characteristics of treated zone processed by pulsed Nd-YAG laser surface remelting on hot work steel. Opt. Laser Technol. 64 (4), 227–234 (2014).

    Article  CAS  Google Scholar 

  6. Z.X. Jia, Y.W. Liu, J.Q. Li, L.J. Liu, and H.L. Li: Crack growth behavior at thermal fatigue of H13 tool steel processed by laser surface melting. Int. J. Fatigue 78, 61–71 (2015).

    Article  CAS  Google Scholar 

  7. G. Telasang, J.D. Majumdar, G. Padmanabham, and I. Manna: Structure–property correlation in laser surface treated AISI H13 tool steel for improved mechanical properties. Mater. Sci. Eng., A 599, 255–267 (2014).

    Article  CAS  Google Scholar 

  8. M. Kchaou, R. Elleuch, Y. Desplanques, X. Boidin, and G. Degallaix: Failure mechanisms of H13 die on relation to the forging process—A case study of brass gas valves. Eng. Failure Anal. 17 (2), 403–415 (2010).

    Article  CAS  Google Scholar 

  9. B. Reggiani, L. Donati, J. Zhou, and L. Tomesani: The role of creep and fatigue in determining the high-temperature behaviour of AISI H11 tempered steel for aluminium extrusion dies. J. Mater. Process. Technol. 210 (12), 1613–1623 (2010).

    Article  CAS  Google Scholar 

  10. S. Mosbah, M. Bellet, and C.A. Gandin: Investigation of crack propagation in X38CrMoV5 (AISI H11) tool steel at elevated temperatures. Procedia Eng. 2 (1), 2045–2054 (2010).

    Article  Google Scholar 

  11. M. Shah, C. Mabru, M. Baccar, and F. Rezai-Aria: Normalization of fatigue crack growth data in AISI H11 tool steel at room and elevated temperature. Int. J. Damage Mech. 24 (8), 413–422 (2014).

    Google Scholar 

  12. R.P. Skelton: Deformation, diffusion and ductility during creep—Continuous void nucleation and creep–fatigue damage. Mater. High Temp. 34 (2), 121–133 (2017).

    Article  CAS  Google Scholar 

  13. K. Nikbin: A unified multiscale ductility exhaustion based approach to predict uniaxial, multiaxial creep rupture and crack growth. Eng. Fract. Mech. 179 (15), 240–259 (2017).

    Article  Google Scholar 

  14. Y.N. Fan, H.J. Shi, and K. Tokuda: A generalized hysteresis energy method for fatigue and creep–fatigue life prediction of 316L(N). Mater. Sci. Eng., A 625 (1), 205–212 (2015).

    Article  CAS  Google Scholar 

  15. S.P. Zhu, H.Z. Huang, L.P. He, Y. Liu, and Z. Wang: A generalized energy-based fatigue–creep damage parameter for life prediction of turbine disk alloys. Eng. Fract. Mech. 90 (90), 89–100 (2012).

    Article  Google Scholar 

  16. S.P. Zhu, H.Z. Huang, Y. Li, and L. He: A novel viscosity-based model for low cycle fatigue–creep life prediction of high-temperature structures. Int. J. Damage Mech. 21 (7), 1076–1099 (2012).

    Article  Google Scholar 

  17. S.P. Zhu and H.Z. Huang: A generalized frequency separation–strain energy damage function model for low cycle fatigue–creep life prediction. Fatigue Fract. Eng. Mater. Struct. 33 (4), 227–237 (2010).

    Article  Google Scholar 

  18. S.P. Zhu, Q. Lei, H.Z. Huang, Y.J. Yang, and W. Peng: Mean stress effect correction in strain energy-based fatigue life prediction of metals. Int. J. Damage Mech. 26, 1219–1241 (2016).

    Article  Google Scholar 

  19. S.P. Zhu, Y.J. Yang, H.Z. Huang, Z. Lv, and H.K. Wang: A unified criterion for fatigue–creep life prediction of high temperature components. Proc. Inst. Mech. Eng., Part G 231 (4), 677–688 (2017).

    Article  Google Scholar 

  20. S.P. Zhu, S. Foletti, and S. Beretta: Probabilistic framework for multiaxial LCF assessment under material variability. Int. J. Fatigue 103, 371–385 (2017).

    Article  Google Scholar 

  21. J. Wang: Low cycle fatigue and cycle dependent creep with continuum damage mechanics. Int. J. Damage Mech. 1 (2), 237–244 (1992).

    Article  CAS  Google Scholar 

  22. Z. Fan, X. Chen, L. Chen, and J. Jiang: Fatigue–creep behavior of 1.25Cr0.5Mo steel at high temperature and its life prediction. Int. J. Fatigue 29 (6), 1174–1183 (2007).

    Article  CAS  Google Scholar 

  23. S. Sankararaman and S. Mahadevan: Distribution type uncertainty due to sparse and imprecise data. Mech. Syst. Signal Pr. 37 (1–2), 182–198 (2013).

    Article  Google Scholar 

  24. M. Guida and F. Penta: A Bayesian analysis of fatigue data. Struct. Saf. 32 (1), 64–76 (2010).

    Article  Google Scholar 

  25. M.F. Giordana, P.F. Giroux, I. Alvarez-Armas, M. Sauzay, A. Armas, and T. Kruml: Microstructure evolution during cyclic tests on EUROFER 97 at room temperature. TEM observation and modelling. Mater. Sci. Eng., A 550 (31), 103–111 (2012).

    Article  CAS  Google Scholar 

  26. D.W. Kim and S.S. Kim: Contribution of microstructure and slip system to cyclic softening of 9 wt% Cr steel. Int. J. Fatigue 36 (1), 24–29 (2012).

    Article  CAS  Google Scholar 

  27. W. Du, Y. Luo, Y. Wang, S. Chen, and D. Yu: A new energy-based method to evaluate low-cycle fatigue damage of AISI H11 at elevated temperature. Fatigue Fract. Eng. Mater. Struct. 36, 994–1004 (2017).

    Article  Google Scholar 

  28. J.J. Xiong and R.A. Shenoi: A practical randomization approach of deterministic equation to determine probabilistic fatigue and fracture behaviours based on small experimental data sets. Int. J. Fract. 145 (4), 273–283 (2007).

    Article  Google Scholar 

  29. X.L. Yan, X.C. Zhang, S.T. Tu, S.L. Mannan, F.Z. Xuan, and Y.C. Lin: Review of creep–fatigue endurance and life prediction of 316 stainless steels. Int. J. Pressure Vessels Piping 126–127, 17–28 (2015).

    Article  Google Scholar 

Download references

ACKNOWLEDGMENT

This work was sponsored by National Natural Science Foundation of China (Grant No. 51405044).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiqi Du.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Du, W. & Luo, Y. A mean plastic strain fatigue–creep life prediction and reliability analysis of AISI H13 based on energy method. Journal of Materials Research 32, 4254–4262 (2017). https://doi.org/10.1557/jmr.2017.385

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.385

Navigation