Skip to main content
Log in

Preparation of nanostructured Cu(OH)2 and CuO electrocatalysts for water oxidation by electrophoresis deposition

  • Article
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Herein, we report the synthesis of Cu(OH)2 nanobelts with high yield at low cost by a simple aqueous solution reaction. The Cu(OH)2-FTO electrode was then fabricated by a facile electrophoresis deposition method with the as-prepared Cu(OH)2 nanobelts, which require no binding agents. By subsequent heat treatment at 300 °C for 2 h, the Cu(OH)2-FTO electrode was converted to the CuO-FTO electrode. The investigation of electrocatalysis of the Cu(OH)2-FTO and CuO-FTO electrodes for water oxidation was conducted in a 0.2 M phosphate buffer solution at pH 12. The CuO-FTO electrode can catalyze water oxidation with an impressive onset overpotential of 370 mV and an overpotential of 500 mV for a current density of 1 mA/cm2 with a low Tafel slope of 57 mV/dec. This facile fabrication strategy is appealing for realizing the practical application of Cu-based electrocatalysts for water oxidation and is expected to be extended to prepare other heterocatalyst electrodes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

FIG. 1
FIG. 2
FIG. 3
FIG. 4
FIG. 5
FIG. 6
FIG. 7
FIG. 8

Similar content being viewed by others

References

  1. H.B. Gray: Powering the planet with solar fuel. Nat. Chem. 1, 7 (2009).

    CAS  Google Scholar 

  2. D.G. Nocera: Chemistry of personalized solar energy. Inorg. Chem. 48, 10001–10017 (2009).

    CAS  Google Scholar 

  3. N. Nelson and A. Ben-Shem: The complex architecture of oxygenic photosynthesis. Nat. Rev. Mol. Cell Biol. 5, 971–982 (2004).

    CAS  Google Scholar 

  4. T.R. Cook, D.K. Dogutan, S.Y. Reece, Y. Surendranath, T.S. Teets, and D.G. Nocera: Solar energy supply and storage for the legacy and nonlegacy worlds. Chem. Rev. 110, 6474–6502 (2010).

    CAS  Google Scholar 

  5. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q. Mi, E.A. Santori, and N.S. Lewis: Solar water splitting cells. Chem. Rev. 110, 6446–6473 (2010).

    CAS  Google Scholar 

  6. J.A. Turner: A realizable renewable energy future. Science 285, 687–689 (1999).

    CAS  Google Scholar 

  7. D.K. Zhong and D.R. Gamelin: Photoelectrochemical water oxidation by cobalt catalyst (“Co–Pi”)/α-Fe2O3 composite photoanodes: Oxygen evolution and resolution of a kinetic bottleneck. J. Am. Chem. Soc. 132, 4202–4207 (2010).

    CAS  Google Scholar 

  8. R. Cao, W. Lai, and P. Du: Catalytic water oxidation at single metal sites. Energy Environ. Sci. 5, 8134 (2012).

    CAS  Google Scholar 

  9. J. Barber: Photosynthetic energy conversion: Natural and artificial. Chem. Soc. Rev. 38, 185–196 (2009).

    CAS  Google Scholar 

  10. A. Harriman, I.J. Pickering, J.M. Thomas, and P.A. Christensen: Metal-oxides as heterogeneous catalysts for oxygen evolution under photochemical conditions. J. Chem. Soc., Faraday Trans. 1 (84), 2795–2806 (1988).

    Google Scholar 

  11. J. Horkans and M.W. Shafer: Investigation of electrochemistry of a series of metal dioxides with rutile-type structure—MoO2, WO2, ReO2, RuO2, OsO2, and IrO2. J. Electrochem. Soc. 124, 1202–1207 (1977).

    CAS  Google Scholar 

  12. M. Carmo, D.L. Fritz, J. Merge, and D. Stolten: A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 38, 4901–4934 (2013).

    CAS  Google Scholar 

  13. M. Chen, Y. Wu, Y. Han, X. Lin, J. Sun, W. Zhang, and R. Cao: An iron-based film for highly efficient electrocatalytic oxygen evolution from neutral aqueous solution. ACS Appl. Mater. Interfaces 7, 21852–21859 (2015).

    CAS  Google Scholar 

  14. K.S. Joya, Y.F. Joya, and H.J.M. de Groot: Ni-based electrocatalyst for water oxidation developed in situ in a HCO3/CO2 system at near-neutral pH. Adv. Energy Mater. 4, 1301929 (2014).

    Google Scholar 

  15. J.L. Du, Z.F. Chen, S.R. Ye, B.J. Wiley, and T.J. Meyer: Copper as a robust and transparent electrocatalyst for water oxidation. Angew. Chem., Int. Ed. Engl. 54, 2073–2078 (2015).

    CAS  Google Scholar 

  16. R. Tagore, R.H. Crabtree, and G.W. Brudvig: Oxygen evolution catalysis by a dimanganese complex and its relation to photosynthetic water oxidation. Inorg. Chem. 47, 1815–1823 (2008).

    CAS  Google Scholar 

  17. W.C. Ellis, N.D. McDaniel, S. Bernhard, and T.J. Collins: Fast water oxidation using iron. J. Am. Chem. Soc. 132, 10990–10991 (2010).

    CAS  Google Scholar 

  18. J.G. McAlpin, Y. Surendranath, M. Dinca, T.A. Stich, S.A. Stoian, W.H. Casey, D.G. Nocera, and R.D. Britt: EPR evidence for Co(IV) species produced during water oxidation at neutral pH. J. Am. Chem. Soc. 132, 6882–6883 (2010).

    CAS  Google Scholar 

  19. M. Dinca, Y. Surendranath, and D.G. Nocera: Nickel-borate oxygen-evolving catalyst that functions under benign conditions. Proc. Natl. Acad. Sci. U. S. A. 107, 10337–10341 (2010).

    CAS  Google Scholar 

  20. H. Chen, Y. Gao, Z. Lu, L. Ye, and L. Sun: Copper oxide film in situ electrodeposited from Cu(II) complex as highly efficient catalyst for water oxidation. Electrochim. Acta 230, 501–507 (2017).

    CAS  Google Scholar 

  21. Z. Chen and T.J. Meyer: Copper(II) catalysis of water oxidation. Angew. Chem., Int. Ed. Engl. 52, 700–703 (2013).

    CAS  Google Scholar 

  22. S. Cui, X. Liu, Z. Sun, and P. Du: Noble metal-free copper hydroxide as an active and robust electrocatalyst for water oxidation at weakly basic pH. ACS Sustainable Chem. Eng. 4, 2593–2600 (2016).

    CAS  Google Scholar 

  23. X. Liu, S.S. Cui, Z.J. Sun, and P.W. Du: Copper oxide nanomaterials synthesized from simple copper salts as active catalysts for electrocatalytic water oxidation. Electrochim. Acta 160, 202–208 (2015).

    CAS  Google Scholar 

  24. X. Liu, H.X. Jia, Z.J. Sun, H.Y. Chen, P. Xu, and P.W. Du: Nanostructured copper oxide electrodeposited from copper(II) complexes as an active catalyst for electrocatalytic oxygen evolution reaction. Electrochem. Commun. 46, 1–4 (2014).

    Google Scholar 

  25. C. Lu, J. Wang, and Z. Chen: Water oxidation by copper-amino acid catalysts at low overpotentials. ChemCatChem 8, 2165–2170 (2016).

    CAS  Google Scholar 

  26. F. Yu, F. Li, B. Zhang, H. Li, and L. Sun: Efficient electrocatalytic water oxidation by a copper oxide thin film in borate buffer. ACS Catal. 5, 627–630 (2015).

    CAS  Google Scholar 

  27. M.T. Zhang, Z. Chen, P. Kang, and T.J. Meyer: Electrocatalytic water oxidation with a copper(II) polypeptide complex. J. Am. Chem. Soc. 135, 2048–2051 (2013).

    CAS  Google Scholar 

  28. W. Zhang, J. Qi, K. Liu, and R. Cao: A nickel-based integrated electrode from an autologous growth strategy for highly efficient water oxidation. Adv. Energy Mater. 6, 1502489 (2016).

    Google Scholar 

  29. J. Wang, L. Ji, S. Zuo, and Z. Chen: Hierarchically structured 3D integrated electrodes by galvanic replacement reaction for highly efficient water splitting. Adv. Energy Mater. 7, 1700107 (2017).

    Google Scholar 

  30. J.R. McKone, B.F. Sadtler, C.A. Werlang, N.S. Lewis, and H.B. Gray: Ni–Mo nanopowders for efficient electrochemical hydrogen evolution. ACS Catal. 3, 166–169 (2013).

    CAS  Google Scholar 

  31. J. Qi, W. Zhang, R. Xiang, K. Liu, H.Y. Wang, M. Chen, Y. Han, and R. Cao: Porous nickel-iron oxide as a highly efficient electrocatalyst for oxygen evolution reaction. Adv. Sci. 2, 1500199 (2015).

    Google Scholar 

  32. X. Liu, Z.J. Sun, S.S. Cui, and P.W. Du: Cuprous oxide thin film directly electrodeposited from a simple copper salt on conductive electrode for efficient oxygen evolution reaction. Electrochim. Acta 187, 381–388 (2016).

    CAS  Google Scholar 

  33. X. Lu and C. Zhao: Electrodeposition of hierarchically structured three-dimensional nickel-iron electrodes for efficient oxygen evolution at high current densities. Nat. Commun. 6, 6616 (2015).

    CAS  Google Scholar 

  34. J. Wang, L. Ji, and Z. Chen: In situ rapid formation of a nickel–iron-based electrocatalyst for water oxidation. ACS Catal. 6, 6987–6992 (2016).

    CAS  Google Scholar 

  35. X. Wen, W. Zhang, and S. Yang: Synthesis of Cu(OH)2 and CuO nanoribbon arrays on a copper surface. Langmuir 19, 5898–5903 (2003).

    CAS  Google Scholar 

  36. W. Wang, O.K. Varghese, C. Ruan, M. Paulose, and C.A. Grimes: Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates. J. Mater. Res. 18, 2756–2759 (2011).

    Google Scholar 

  37. C. Lu, L. Qi, J. Yang, D. Zhang, N. Wu, and J. Ma: Simple template-free solution route for the controlled synthesis of Cu(OH)2 and CuO nanostructures. J. Phys. Chem. B 108, 17825–17831 (2004).

    CAS  Google Scholar 

  38. Y. Deng, A.D. Handoko, Y. Du, S. Xi, and B.S. Yeo: In situ raman spectroscopy of copper and copper oxide surfaces during electrochemical oxygen evolution reaction: Identification of CuIII oxides as catalytically active species. ACS Catal. 6, 2473–2481 (2016).

    CAS  Google Scholar 

  39. C. Lu, J. Du, X-J. Su, M-T. Zhang, X. Xu, T.J. Meyer, and Z. Chen: Cu(II) aliphatic diamine complexes for both heterogeneous and homogeneous water oxidation catalysis in basic and neutral solutions. ACS Catal. 6, 77–83 (2016).

    CAS  Google Scholar 

  40. M. Durando, R. Morrish, and A.J. Muscat: Kinetics and mechanism for the reaction of hexafluoroacetylacetone with CuO in supercritical carbon dioxide. J. Am. Chem. Soc. 130, 16659–16668 (2008).

    CAS  Google Scholar 

  41. N.S. McIntyre, S. Sunder, D.W. Shoesmith, and F.W. Stanchell: Chemical information from XPS—Applications to the analysis of electrode surfaces. J. Vac. Sci. Technol. 18, 714–721 (1981).

    CAS  Google Scholar 

  42. K.S. Joya and H.J.M. de Groot: Controlled surface-assembly of nanoscale leaf-type Cu-oxide electrocatalyst for high activity water oxidation. ACS Catal. 6, 1768–1771 (2016).

    CAS  Google Scholar 

  43. T.T. Li, S. Cao, C. Yang, Y. Chen, X.J. Lv, and W.F. Fu: Electrochemical water oxidation by in situ-generated copper oxide film from [Cu(TEOA)(H2O)2][SO4] complex. Inorg. Chem. 54, 3061–3067 (2015).

    CAS  Google Scholar 

  44. E.L. Tae, J. Song, A.R. Lee, C.H. Kim, S. Yoon, I.C. Hwang, M.G. Kim, and K.B. Yoon: Cobalt oxide electrode doped with iridium oxide as highly efficient water oxidation electrode. ACS Catal. 5, 5525–5529 (2015).

    CAS  Google Scholar 

  45. D.K. Bediako, Y. Surendranath, and D.G. Nocera: Mechanistic studies of the oxygen evolution reaction mediated by a nickel-borate thin film electrocatalyst. J. Am. Chem. Soc. 135, 3662–3674 (2013).

    CAS  Google Scholar 

  46. F. Li, L. Bai, H. Li, Y. Wang, F. Yu, and L. Sun: An iron-based thin film as a highly efficient catalyst for electrochemical water oxidation in a carbonate electrolyte. Chem. Commun. 52, 5753–5756 (2016).

    CAS  Google Scholar 

  47. W. Zhang, Y. Wu, J. Qi, M. Chen, and R. Cao: A thin NiFe hydroxide film formed by stepwise electrodeposition strategy with significantly improved catalytic water oxidation efficiency. Adv. Energy Mater. 7, 1602547 (2017).

    Google Scholar 

Download references

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (21573160 and 21405114) and Science & Technology Commission of Shanghai Municipality (14DZ2261100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zuofeng Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Zhu, L., Ji, L. et al. Preparation of nanostructured Cu(OH)2 and CuO electrocatalysts for water oxidation by electrophoresis deposition. Journal of Materials Research 33, 581–589 (2018). https://doi.org/10.1557/jmr.2017.378

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2017.378

Navigation